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Energy supply is one of the most serious problems for micro-mechatronic devices. For
collective systems, such as sensor networks or swarms of autonomous micro-robots,
collective energy management is especially hard. This work describes a kinetic model of
energy foraging and an application of bio-inspired harvesting behaviour to a real robot
swarm. The heuristic strategy derived allows proper collective management of energy
resources without using global knowledge and guarantees a good swarm efficiency.
Despite the whole swarm having the same behavioural rules, some robots specialize
in only a few foraging activities, whereas others are more universal in their behaviour.
Such emergence of ‘specialists’ and ‘generalists’ is observed in animal groups and can
indicate common behavioural principles underlying natural and artificial systems.
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1. Introduction

Modern micro-technological research faces several essential challenges related to the size,
available energy and functional capabilities of micro-mechatronic systems [1]. Because of
these limitations, micro-devices are relatively simple, with minuscule sensing, computa-
tion, communication and actuation capabilities [2]. There is a limited number of ways to
satisfy the continuously increasing demands made on these devices in human and industrial
environments, for example, creating a large number of simple autonomous systems, such
as micro-robots, so that their collective work and apparent emergent phenomena provide
extended functionality and high reliability for the whole system [3,4].

Designers of collective micro-systems face many problems related to coordination,
information transfer and decision-making [5,6]; of these, autonomous energy management
is the most critical [7,8]. Autonomous energy management comprises several issues: the
recharging of equipment, managing the docking approach, individual energy homeosta-
sis and the behavioural strategy of the whole group (e.g. [9,10]). This article focuses on
collective energy foraging, using an example implementation in a swarm of autonomous
‘Jasmine’ micro-robots [11]. These robots have energy-level sensors; when they become
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‘hungry’, they seek a docking station. Since their charging and discharging time is almost
equal, a docking station with N/2 slots can provide enough energy for N robots. If we
calculate efficiency as a relationship between the main working state and the auxiliary
non-working states, the best achievable swarm efficiency in ‘Jasmine’ robots is 50%.
However, the more robots are involved in the collective behaviour, the more energy they
require for auxiliary non-working activities. As shown in this work, the expected collective
energy consumption at a constant swarm density is proportional to N2 of robots, while the
swarm efficiency (with some hand-coded greed foraging strategies) varies between 14.5%
and 21%.

The low efficiency of greed strategies can be explained by the unoptimized dynamics
of working and recharging robots in a swarm [12]. The derived kinetic models indicate that
variable swarm density and a minimal number of waiting robots are necessary conditions
for improving the efficiency of energy foraging. Moreover, individual energy thresholds
should be adaptable to the energy level of the swarm. To implement these conditions, we
apply biological foraging strategies. Optimal foraging theory (OFT) has been used by some
researchers in the field of robotics: Ulam and Balch [13], for example, used OFT to evaluate
the efficiency of robots. Simple reactive ‘shortcut’ rules, based on biological data, were
also investigated in artificial agents, to achieve an optimally efficient search for resources
by solitary agents [14,15], as well as almost optimal distribution of non-communicating
agents between patches of different profitability [16].

The idea behind bio-inspired foraging strategies is derived from the observation that
some animals are known to spontaneously change their foraging sites, despite the sites
still having food resources available. Usually, these animals’ hunger levels are not criti-
cal, and so they are able to spend some of their remaining energy in exploring for new
territory. This is known as a ‘spontaneous’ foraging strategy. Other animals remain in the
same place for a while, even after all the food there has been consumed. This is known
as a ‘persistent’ foraging strategy. The persistence of individual behavioural acts has been
instantiated in robots in various ways and has been proven to enhance agents’ performance
[17–19]. Interaction between persistence and spontaneity has been shown to be useful
in control of odour gradient following in simple simulated agents [20]. To our knowl-
edge, however, no attempt has been made to explore interaction between persistent and
spontaneous behavioural sequences in robots which perform collective tasks. As shown
experimentally, bio-inspired energy foraging, based on kinetic models, provides a swarm
efficiency of 33–38%.

During robot experiments using a bio-inspired foraging strategy, we encountered
another interesting result. Generally, all the robots execute four main roles: working,
looking for the docking station, waiting and recharging. Our observation is that some
robots change their roles less frequently than others, becoming ‘specialists’, that is, spe-
cialized in a particular behaviour. Other robots that demonstrate more frequent changes
of role are ‘generalists’, which can adopt many roles. The emergence of specializa-
tion has been noted by many researchers and it has been shown that the specialization
of agents can come about through artificial evolution. The specialist or generalist out-
come of evolution depends on the energy value of the available food and the agents’
ability to discriminate different food objects and extract energy from them [21]. In
[22], when accomplishing a multi-foraging task, it was shown how learning results in
the division of a robotic team into specialists and generalists. As demonstrated later
in this work, the appearance of specialists and generalists in swarm-foraging behaviour
seems to be an emergent phenomenon originating in the spatial interactions between
robots.
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This article is structured as follows: Section 2 introduces the individual energy
homeostasis of the ‘Jasmine’ micro-robot and Section 3 develops a theoretical model
of foraging behaviour for the simulated micro-robot. Sections 4 and 5 are devoted to
the bio-inspired foraging strategy and its implementation. Section 6 describes swarm
experiments performed with real robots. Section 7 concludes this work.

2. Individual energy homeostasis for the ‘Jasmine’ micro-robot

The ‘Jasmine’ micro-robot, Figure 1(a), is an open source hardware robot.1 The robot mea-
sures 30 × 30 × 20 mm, uses two Atmel AVR Mega micro-controllers (Atmel, San Jose,
CA, USA) and has six infrared (IR)-based communication/proximity channels, covering
360◦ with maximum/minimum ranges of 200/100 mm. It uses two geared DC motors with
maximum velocity of about 0.5 m/s. Extension boards provide wireless communication
(ZigBee), gradient light perception, an ego-positioning system and so on. The ‘Jasmine’
uses a single-cell 250 mAh Li–Po accumulator with internal energy sensor and consumes
about 200 mA when moving and sensing, about 20 mA when sensing only (communicat-
ing) and about 10 mA when listening only. The autonomous work period is about 1.25 h.
The Li–Po accumulator works optimally when discharging until it reaches 75–80% of full
capacity; critical level occurs when the voltage drops under 3V. The recharging current is
1C (250 mA); full recharging takes about 90 min, and partial recharging time is almost
equal to discharging time. The autonomous energetic homeostasis of the robot has five
states, as shown in Table 1.

A swarm of ‘Jasmine’ robots can be thought of as an autonomous sensor network capa-
ble (due to its self-recharging capacity) of long-term autonomy. The ability to behave as

Docking stations

Buffered area

Working area

Waiting robots

(a) (b)

Figure 1. (a) The ‘Jasmine III’ micro-robot; (b) Collective energy foraging in a swarm of 50
‘Jasmine’ micro-robots, showing docking stations, recharging robots and robots waiting near the
docking station.

Table 1. Main energetic states of the ‘Jasmine’ robot.

State Voltage (V) Reaction

Sd, energetic death state <3.05 Power down, stand-by mode
Sc, critical state 3.05–3.2 Seeking docking station
Sh, hungry state 3.2–3.7 Working or seeking recharging
Ss, satisfied state 3.7–4.0 Primarily working
Sf, full state 4.0–4.2 Stop recharging
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such a network is the main motivation for using swarm robots in this work. We consider
the main working states to be movement in the robot arena, collection of sensor data (from
IR sensors) and transmission of these data to the main ZigBee server. This scenario is
general enough to be transferred to other robot swarms, for example, underwater or aerial
collective systems.

The robot can manage its own behaviour, as shown in Figure 2. First, in the critical
state, robots halt the activity currently being executed and seek a docking station. Second,
the robots prioritize the activity currently being executed Pr(Task) and the seeking of food
Pr(Sh) (feeling hungry). When, for example, the priority of the current activity is 60%, but
hunger is 70%, robot will seek the docking station. Finally, a robot can have the so-called
collective instinct, when it will recharge only until it reaches the satisfied state Ss. This
takes less time than recharging until full (Sf) and frees the slot for another robot. While for-
aging, the robot can exhibit any of four roles, which can change dynamically (see Table 2).

All the robots first execute the working role R0. When robots become ‘hungry’, they
change to role R1 and start seeking the docking station. The docking station [9,23] has
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Figure 2. Structural scheme of energetic homeostasis.
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Table 2. Four main roles in energetic homeostasis.

State ω (W/s) Description

R0, working ω ≈ 2 × 10−4 Sensor network activities
R1, searching ω ≈ 2 × 10−4 Seeking docking station
R2, waiting ω ≈ 2 × 10−5 Waiting and docking
R3, recharging ω ≈ 2 × 10−4 Recharging at docking station

Note: ω represents the energy consumption (in watt) per second per robot.

two copper strips, with 5V across them (see Figure 1(b)). Each slot of the docking station
is equipped with a communication system, like the robots themselves. Thus, the docking
station and the robots can communicate (the robots can ‘smell’ free slots from 200 mm
away). The robots approach the docking station; when it is busy, they remain close by in
the ‘waiting’ role, R2. After recharging (role R3), the robots resume the working role R0.

We denote the number of robots that execute role Ri as NRi and the duration of role Ri

in the robot j as tRij , or in general, tRi . The available individual energy Ei is estimated in
ADC values of the corresponding voltage of the Li–Po accumulator. The efficiency �j of
the robot j can be calculated as

�j = tR0j

tR0j + tR1j + tR2j + tR3j

. (1)

The charging and discharging current (i.e. the time) are almost the same, that is, tR0j = tR3j .
When tR1j = tR2j = 0, the efficiency achieves � = 1/2 = 50%. When tR3j = 0, that is, the
robot does not recharge and only works, its efficiency is � = 100%. Thus, the value of �

is useful for the cases tR0j �= tR3j and expresses a general relationship in a robot’s energetic
balance. Swarm efficiency �s and the collective energy level of the swarm Es are

�s = 1

N

N∑
j

�j and Es = 1

N

N∑
i

Ei, (2)

where N is the number of robots and Ei is the individual energy level of a robot.

3. Kinetic model of swarm foraging

We demonstrated in Section 2 that the best swarm efficiency occurs when tR1 = tR2 = 0.
Obviously, efficiency in swarm tR1 �= 0 and tR2 �= 0. In this section, we will estimate swarm
efficiency for different cases of R1 and R2 and formulate the requirements for a good
collective foraging strategy.

3.1. Global energy homeostasis for a constant swarm density

Swarm density Dsw is defined as a relationship between the number of robots N and the
area S they occupy. The critical swarm density Dsw

crit can be derived from the assumption
that robots cover the whole area S, that is, from S = Nmax

crit πR2
s , where Rs is the sensing

radius of a robot:

Nmax
crit = S

2π R2
s

. (3)
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For the ‘Jasmine’ robots, in an arena measuring S = 140 × 115 cm2, the critical maxi-
mum number of robots is 52. We can also estimate an optimal swarm density Dsw

opt using
the assumption that for best swarm reactivity (see [24]), the robots should be within a
communication radius Rc of each other

Nopt = S

2πR2
c

. (4)

For the same conditions, Nopt = 23. Maintaining N ≈ Nopt is advantangeous, as it allows for
the reaching of several super-scalable swarm parameters [24]. Therefore, in this section, we
calculate global energy homeostasis from the condition N ≈ Nopt, that is, from the constant
swarm density.

Let � be the amount of energy coming into the swarm from outside. The inequality of
the energy balance

Es ≤ � (5)

says that the energy consumption should be less than, or at least equal to, the energy input.
Energy consumption Ec comprises the finding of the energy source by N robots (ωtR1 N),
the waiting/docking of N robots (ωtR2 N) and finally the moving of N/2 robots (ωtR0 N/2),
while other N/2 robots are recharging (ωtR3 N/2). Using the values for the ‘Jasmine’ robots
tR0 + tR3 = 2tR0 , we derive

Es = ωN(tR0 + tR1 + mtR2), (6)

where the numeric coefficient m = 0.1 (see Table 2 for differences between ω in R2 and R3).
The time tR1 required to find energy can be estimated in a linear approximation from the
covering problem (see, for example, [25]): when Rs is the sensing radius of the robot and
υ is the velocity of motion, during tR1 a robot can cover the area 2RsυtR1 . We assume that
for a subcritical swarm density (N < Nmax

crit ), a robot has to cover an area of S – SrN to find
energy, where Sr is the area of the robot itself, that is,

tR1 = S − SrN

2Rsυ
. (7)

To satisfy the condition N ≈ Nopt, when increasing N , we must also increase S, that is, to
S(N). We finally derive

tR1 = N
πR2

c − Sr

2Rsυ
≈ 1.55N . (8)

Thus, the finding time tR1 can be approximated as a linear function of the number of robots,
when keeping the swarm density constant. This is an important difference to Equation (15)
in Section 3.2, which calculates tR1 for variable swarm densities and for overlapping
trajectories of multiple robots.

The docking approach is relatively quick; however, the docking station can become a
bottleneck when too many robots are moving to and from the energy source. To estimate
tR2 , we can assume that the docking time is sublinear to the number of robots, that is,
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tR2 = λN , where the small coefficient λ is of dimension time, estimated experimentally.
Returning to Equation (6), we derive

Ec = NωtR0 + N2ω
πR2

c − Sr

2Rsυ
+ N2ωmλ ≤ �. (9)

Equation (9) requires explanation. The linear term in Equation (9) represents the doing of
a useful job, required, for example, for sensor network activities. However, the quadratic
terms represent the energy needs for exploration of territory and mutual hindering of
robots, required for supporting system-internal activities. This means swarm (and more
generally collective) systems have an optimal size at a constant swarm density. When a
swarm grows, that is, covers more territory, the system-internal activities consume much
more energy for internal activities than is required for useful outputs from the system.
Equation (9) can be reformulated for swarm efficiency (Equation (1)). For a constant swarm
density, energetic efficiency �E

�E = tR0

tR0 + N πR2
c−Sr

2Rsυ
+ Nmλ

(10)

limits the spatial growth of swarm systems, thus representing a natural size limit. Efficiency
for the ‘Jasmine’ robot parameters is shown in Figure 3(a). Equations (1) and (10) dif-
fer from each other in Equation (6) that N/2 robots are used during tR0 and tR3 for the
calculation of �E. For individual �j, N of robots is irrelevant.

3.2. Collective strategies for a variable swarm density

As shown in Section 3.1, maintaining a constant swarm density costs a high energetic price.
Therefore, the main consideration for a good collective foraging strategy is to make swarm
density variable N < Nmax

crit and to make use of the effects that appear. In particular, a higher
swarm density allows the reduction of tR1 , using the effect of overlapping trajectories. As
shown in Section 3.1, when the search area is S, the covering area Scov of randomly moving
robots can be estimated as the sum of non-overlapping local areas Sl = υt2Rs (shown in
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Figure 3. (a) Energetic efficiency of the ‘Jasmine’ swarm for Equation (6) at a constant swarm
density; (b) plot of covering rate from Equation (14).



8 S. Kernbach et al.

2Rc
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Figure 4. Coverage by (a) 2 and (b) 13 robots. Ten seconds of motion (10 images) are shown, as
difference images extracted from the video sequences.

Figure 4(a)) minus overlapping between Sl. There are two reasons for overlapping: first,
the swarm density, when one robot overlaps the trajectory of another robot (Sov1); and
second, the collision-avoiding behaviour of a robot, when it overlaps its own trajectory
(Sov2), that is,

Scov = NSl − Sov1 − Sov2. (11)

Equation
∑

Scov/S defines the quality of the covering strategy. In Figure 4 we demonstrate
two cases, in which 2 and 13 robots move randomly in an area measuring 140 × 115 cm2.
When t is large enough, it is assumed

∑
Sl ≈ S; whereas for short t,

∑
Sl < S. During

random motion, the local areas Sl overlap, so the efficiency of coverage is decreased.
Obviously, a good strategy must minimize overlapping between Sl. Overlapping is difficult
to calculate exactly, however, it can be estimated: the N moving robots can be repre-
sented as Nn static robots when calculating a ‘differential image’, as shown in Figure
4, where n is the number of snapshots. The value of n increases continuously, so that
n = kt, where k is a coefficient of ‘how often snapshots are taken during t’. We assume that
a snapshot only shows when robots move more than 2Rs, that is, k = υ/2Rs. Randomly
moving robots behave very similar to gas molecules, that is, they are uniformly dis-
tributed over the area covered at t → ∞. Statistically, the areas Sl are not overlapped,
when 2RsS/Nυt > πR2

s (Ntυ)/2Rs. Therefore, the value Sov1 can be estimated as

Sov1 = πR2
s (Nυt)2 − 4R2

s S

2RsNυt
. (12)

The value Sov1 makes sense when Sov1 ≥ 0. The value of Sov2 depends on the
collision-avoiding behaviour of a robot. At each collision, the robot rotates, so that
it moves somewhat over its former trajectory. The area lost is proportional to the
number of robot–robot contacts. At each contact, a robot loses a triangle of area, as
shown in Figure 4(a), which can be calculated as R2

s /tan(α/2) or R2
s /0.268 (α is the

collision-avoiding angle, ≈30◦). The number of contacts C is equal to the average number
of robots N/S within the area Sl (with Maxwell coefficient

√
2), that is,

Sov2 = 2
√

2vtR3
s N

0.268S
. (13)
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Finally, we derive this expression for the area covered

Scov = Nυt2Rs − πR2
s (Nυt)2 − 4R2

s S

2RsNυt
− 2

√
2υtR3

s N

0.268S
. (14)

In Figure 3, we plot the relationship in Equation (14) dependent on time, when S = 16,100
cm2, v = 30 cm/s and Rc = 15 cm for two cases N = 2 and N = 13, as shown in Figure 4.
As seen, 2 robots can cover the area in about 1 min, and 13 robots in about 10 s. Both
results correlate very well with the experimental data.

Equation (14) allows us to estimate the time tR1 needed to cover a given area with
a variable swarm density. Setting Sl = S, solving about t and simplifying, we derive the
equation

tR1 = ±
√

2

(
mS +

√
m

(
mS2 − 16R2

cmS + 4R2
cmSπ + 16

√
2R4

c

))
S

Rc

(
−4

√
2mS + √

2mSπ + 8R2
c

)
vN

, (15)

where m = 0.268. From two solutions, we must choose the positive one.

3.3. Requirements for a good swarm foraging strategy

A good foraging strategy should minimize times tR1 and tR2 as well as the number of robots
NR1 and NR2 . This can be done in several ways, bearing in mind that no foraging strategy
may involve centralized elements, global knowledge or unrealistic sensor data.

(i) There are several mechanisms which force swarms to Dsw
opt. In this case the energy

balance should not be considered as � ≈ tR0 N but as

� ≈ tR0 S ≈ tR0 N2, (16)

Equation (16) means that energy input should be proportional to S and uniformly
distributed in S. This is an important consequence, allowing improvement of the
foraging strategy. Uniform distribution enables the swarm to minimize system-
internal activities.

(ii) Constant swarm density does not provide efficient energetic performance. This
in turn means that for Dsw > Dsw

opt a swarm member will die because of bottle-
necks and insufficient energy input. Individual energetic death is a self-regulating
mechanism, allowing maximal collective energetic performance. Therefore, a
robot swarm should allow for the killing of some robots (e.g. switching them
into stand-by mode) to achieve better energetic performance.

(iii) Equation (15) for collective searching provides a shorter time tR1 . However, the
more robots involved in a collective search, the worse their collective efficiency.
A good strategy should maximize �s by varying NR1 in a collective search.

(iv) A good foraging strategy should minimize NR2 and tR2 by managing the number
of robots NR1 that go to recharging. In the ideal case, NR1 should equal the num-
ber of free slots in the docking station. The ‘buffered’ robots should not occlude
the docking station.
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(v) A good foraging strategy should adapt the ‘critical energy’ and ‘hungry’ thresh-
olds Sc and Sh to the current energetic state of the swarm and thus reduce
NR2 .

Of these mechanisms, the last two have the most intense impact on collective foraging. In
Section 4, we demonstrate a bio-inspired heuristics that can provide a good strategy for
optimizing �s by managing NR1 , NR2 and tR1 , tR2 .

4. Bio-inspired strategy for optimal foraging

Optimal behaviour models. Animal behaviour is adaptive, and the notion of adaptation may
be formalized if one introduces a ‘currency’ in which animals invest and gain when accom-
plishing a task. If an animal forages for food, the currency could represent the energy they
gain from their prey and the energy they invest in finding and processing it. If the animal
achieves the maximum ratio of gain to investment possible in a given environment and with
given foraging capabilities, it could be viewed as an ‘optimal forager’. Models which pre-
dict how optimal foragers should search for and select prey are developed within the frame
of OFT [13,16]. Consider an environment in which prey is concentrated in patches, with
prey density differing among the patches. Foraging models predict that an optimal forager
will leave a patch once the rate of encounters with prey in that patch falls below a certain
threshold. This threshold will be higher, and the forager will stay longer on a patch, if the
average prey-encounter rate on a patch is low and/or the average time to find the next patch
is long. Similarly, optimal time allocation among several tasks (e.g. feeding, courtship
and territory-guarding) could, in principle, be calculated based on ideas of gain and
investment.

Specialists and generalists. The basic tenets of OFT (currency, gain/investment ratio) are
applicable not only to individual animals, but also at the level of swarms and colonies.
Specialization in insect colonies can be temporary and depends on the state of the colony
and the resources available. For example, foraging bees usually visit those nectariferous
flowers which provide a maximum gain/investment ratio at the level of whole colony
[26]. The emergence of generalists and specialists can be observed not only in food for-
aging, but also in the allocation of colony members to various tasks such as building,
attending to progeny and so on [27]. An approach based on OFT makes it possible to
develop a model for optimal division of labour among colony members in terms of maximal
gain/investment ratio at the colony level.

Heuristics instead of optimal decisions. Models of optimal behaviour usually deal with
‘all-knowing’ animals that possess global information about the environment within which
they live. When choosing a patch, they would know the rate at which they will encounter
patches of different prey density. When choosing a task to accomplish, the members of a
colony would know the relative priorities of different tasks for the colony, as well as the
number of members already engaged in these tasks. Thus, models of optimal foraging do
not take into account the restrictions suffered by real living beings. Animals have only
limited access to global information about their environment and only a limited time in
which to make decisions. Furthermore, nervous systems, at least in the lower animals, have
limited processing capacity. Finally, natural environments change over time, so a long and
thorough learning and analysis of global information might make no sense in an unstable
environment.

With these restrictions in mind, one can hardly expect animals to be ‘all-knowing’.
For this reason, OFT is not used as a realistic description of animal behaviour; rather,
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it describes an idealized efficient behaviour, used as a standard against which we may
compare real animals and evaluate their efficiency. It is known that, instead of the rational
decisions predicted by optimization models, animals use simple shortcut rules – heuristics
– which result in suboptimal but still efficient behaviours. For example, an individual bee
forager does not analyse global information about colony needs, available food sources
and the current specializations of other bees in the colony. Instead, in deciding which food
source she should switch to, she responds to a few local cues available to her. This simple
decision-making process results in a nearly optimal choice of food source by the whole
colony [26].

We investigated two simple heuristics in robots: the persistence of current behaviour
and spontaneous switching among behaviours. We also investigated whether these heuris-
tics lead to the efficient behaviour of robotic teams, including the emergence of generalists
and specialists.

4.1. Persistence and spontaneity in animal behaviour

Persistence. When an animal starts a particular behaviour, for example, feeding or search-
ing, it performs that behaviour persistently for a while, even if the causal factors that
initially evoked it fall to a low level and the causal factors for another competing
behaviour rise. The mechanisms that make persistence possible differ in different animals.
In mammals, persistence is caused by a positive feedback loop via the basal ganglia –
thalamocortical circuit. The result is hysteresis, in which an act currently being performed
remains active with lower levels of causal factors than were initially required to start it
[19]. The persistence of a current behaviour obviously has an adaptive value. First, it
helps the animal accomplish an already-started act, despite a temporary break in incen-
tive stimulation, and therefore satisfies the organism’s needs. Second, it prevents ‘shuttling’
between competing behaviours. Third, it results in a sort of anticipation, because the posi-
tive feedback increases responsiveness to those future events which are relevant to current
behaviour [18].

The heuristics inspired by foraging in ants was used to simulate division into foragers
and ‘loafers’ within a colony of agents. If a forager happens to find more prey than the
others, its foraging motivation increases and this agent keeps foraging. The motivation of
the less-successful agents falls and they stop foraging. As a result, the collective efficiency
increases, because, when there are many foragers and not much prey, unsuccessful agents
stay in the nest and do not interfere [28].

Spontaneity. As well as persistence, animals exhibit another behavioural feature: sponta-
neous switching among behaviours. We define a switch as spontaneous if it is not a reaction
to external clues, but is based solely on the internal state of the animal. Thus, spontaneity
could serve as a counterbalance to persistency. Bees, for example, show ‘flower constancy’:
once they have begun to take nectar from particular flowers (e.g. blue), they mostly ignore
others (e.g. yellow) even if the nectar content of the blue flowers falls (persistency). Yet,
from time to time and for no obvious reason, the bees sample the yellow flowers, and
some individuals are more apt to sample than others [29]. Such spontaneous sampling may
help a bee colony to track environmental changes and eventually switch to more profitable
flowers.

4.2. Bio-inspired modelling of the interaction between persistence and spontaneity

To model persistence in the ‘Jasmine’ robot, we adopted an approach previously used
to simulate searching behaviour heuristics in caddisfly larvae [30]. The priority of any
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particular task Pr(Task)t at a time t is a function F of the robot’s current energy level Et

and a function G of the current signals It (from both the environment and other robots).
Persistence is introduced as a dependence of Pr(Task)t on the priority Pr(Task)t – 	t that
existed at previous time interval t – 	t:

Pr(Task)t = F(Et) + G(It) + kPr(Task)t−	t, (17)

where k is the ‘inertness coefficient’. The larger the coefficient, the more the priority of the
current task can be expected to increase as the robot keeps performing that task. As a result,
the robot may continue to perform the task even if its energy level and the external signals
from the environment and the other robots fall to low levels, or even temporarily vanish,
and the priority of other tasks increases. This will cause the robot to focus on a particular
task in spite of unpredictable accidental fluctuations of stimulants. We call such a persistent
robot ‘inertial’. As a counterbalance to inertial robots, we introduce ‘spontaneous’ robots.
In these robots, the priority of a task depends only on the robot’s internal state: its current
energy level. We expect that inertial robots will switch among tasks R0–R3 less frequently
than spontaneous robots. In this way, a separation of the robotic team into specialists and
generalists could arise.

5. Implementation of bio-inspired foraging

In implementing a bio-inspired strategy [31], we intend to prove the following assump-
tions:

(i) Varying swarm density Dsw > Dsw
opt will lead to increased efficiency, but also to

dead robots.
(ii) The combination of individual inertial and spontaneous strategies can minimize

the number NR1 of robots recharging. This will in turn minimize NR2 and tR2 and
should increase swarm efficiency.

(iii) Individual thresholds for critical and hungry states Sc and Sh can be adapted by
considering the task Pr(Task)t related to local sensor data and local communi-
cation with neighbours. This can lead, at a collective level, to a reduction in the
number of waiting robots NR2 and so to higher efficiency.

Spontaneous robots follow a simple threshold model to decide whether they are ‘hun-
gry’. As soon as their internal energy value falls below a predefined level Thhungry, they
start to ‘feel hungry’ and look for ‘food’. The robots perform a random search and dock
when they reach an available station. If a robot encounters any waiting robots during this
search, it assumes that the waiting robots need energy more urgently that it does itself, and
it returns to its working task. The spontaneous robots consider themselves to be recharged
and ready to leave the station when a predefined constant amount of energy is reached. If
the robot is not able to dock, it stops at a nearby buffer zone and waits until a free station
is available. The behaviour model of the spontaneous robot is shown in Figure 5(a).

Inertial robots require a more complex model (see Figure 5(b)). We introduce a pri-
ority Pr(Task)t for each activity R0–R3, which can change following interactions with
other team members. While working, the robot starts to ‘feel hungry’ as soon as its
energy level falls below the ‘hungry’ threshold. From that point, the ‘hungry feeling’
incrementally steps up the priority of the search task. The search task will be executed
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Figure 5. Behavioural model for (a) spontaneous and (b) inertial robots.

when its priority exceeds the priority of the work task. The feedback from the swarm allows
us to make assumptions regarding the collective energy level of the swarm and influence
its decision-making process. In our model, inertial robots allow the number of working
robots to decrease the priority of the work task and the number of waiting robots increase
it: current energy level of the robot → increases the search priority, number of working
teammates → decreases the work priority, number of waiting teammates → increases
the work priority. When the search task priority exceeds the work task priority, the robot
switches to the recharge role and seeks the docking station. As soon as a slot becomes avail-
able the robot docks, otherwise it conserves its energy in the buffer zone. While recharging,
the robot starts to ‘feel full’ after its energy level exceeds a predefined recharged energy
threshold. As above, the ‘full feeling’ increases the robot’s need to change its role. The
number of waiting teammates affects the need to change, whereas the number of working
robots positively influences the priority of recharging.

6. Experiments with real robots

Implementing ‘not-knowing’ and ‘limited’ strategies assumes realistic capabilities in the
robots. Their implementation in the ‘Jasmine’ robots is similar to the simulation, but with
some additional restrictions due to the embedded platform. The robots perform in two
arenas: a smaller 110 cm × 85 cm = 0.935 m2 and a larger 140 cm × 115 cm = 1.61 m2,
as shown in Figure 6(a) and (b). A recharging station with five docking slots was installed
on one wall of each arena, as shown in Figure 6(c). Two robots, positioned near each end of
the recharging station, served as waiting stations and continuously sent a waitMessage. To
find the docking station, the robots used a random search. The number of robots in the small

(a) (b) (c)

Figure 6. (a) Experimental set-up for the small arena; (b) experimental set-up for the large arena;
and (c) docking station with IR slots, allowing an ‘energy-smelling’ approach.
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arena varies from 3 to 10 (Dsw = 3.2–10.69). To confirm the optimal and maximal swarm
densities, as mentioned in Section 3, several preliminary experiments with 40, 50 and 60
robots were performed in the large arena. With 50 and 60 robots, almost all the robots
remained immobile, due to continuous ‘collisions’. This experimentally confirms Ssw

crit = 52
for this size of arena. In general, sets of 30 and 40 robots demonstrated the predicted
decrease of tR1 . Due to the energy-limited environment and self-regulation through robots’
‘death’, it was decided to perform the final experiments with 30 robots in the large arena
(Dsw = 18.63, with 15 dead robots Dsw = 9.25).

Alternative docking station in the large arena. Because of uncertainties arising from their
rotations and from reflection of IR light, robots can need several attempts at docking. In
experiments in the large arena, with increased swarm density, this can affect the results.
To remove this problem, we assume docking is successful when a robot finds a free slot
and sends the signal dockingSuccessful to the docking station (i.e. the slot stops sending
the signal attractMessage). Thus, the recharging robots gather together in the ‘recharge
zone’; see Figure 6(c). This approach was also selected following experiments with an
inductive recharging procedure, in which a strong electromagnetic field is concentrated in
the ‘recharge zone’.

Additional restrictions imposed on scenarios. To take a decision, a robot needs feed-
back from the swarm. This feedback is collected by counting the messages received
from working or waiting teammates and is based on the synergetic approach of collec-
tive decision-making for randomly changing neighbours [32]. To estimate a robot’s need
to stay in or leave its current state, three priorities were introduced, similar to those in the
simulation: prioWorkTask, prioSearchTask and prioRechargeTask. During work, the robot
increases prioWorkTask in steps, until the ‘hungry’ threshold is reached, when the robot
starts to increase prioSearchTask. When prioSearchTask exceeds prioWorkTask, the iner-
tial robot switches to the recharging role. The same procedure is followed while the robot
is recharging and its energy level exceeds Threcharged. Then, prioWorkTask competes with
prioRechargeTask. When prioWorkTask exceeds prioRechargeTask, the robot switches
back to the working role.

6.1. Experiments

The first experiments were performed in the small arena, using physical recharging of the
robots. The available docking slots were reduced to three and the experiments were exe-
cuted with 3, 6 and 10 robots. For the small arena, one waiting station was used (otherwise,
the search time for finding the waiting station would not be comparable). To deliver com-
parable results, many of the common parameters were set to be equal for both types of
experiments: maximum energy 185 (the energy value of an accumulator recharged up to
90%); Thdead = 120 (the ‘dead’ energy threshold); and Thcrit = 150.

After comparing the performance of the two foraging strategies, the experiments were
extended to the large arena, with 30 robots. Two strategies, ‘not-knowing’ and ‘limited’
robots, were explored. Two waiting stations were installed, at each end of the docking
station. All the experiments were designed to take 10 min to complete. The speed of
energy reduction had to be controlled, to allow for several recharge phases during any
one experiment. Therefore, in addition to measuring the physical energy value, a variable
energyValueSim was introduced, which can be used to simulate the recharge and discharge
cycle. In all experiments with real robots, the energyValueSim was updated every 4 s. Thus,
a full discharge cycle of a moving robot from maximal energy to the ‘dead’ threshold takes
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Table 3. Parameters and results for experiments with 3, 6, 10 and 30 robots.

Experiments N Ri Rs Collective energy Efficiency �s (%) Deaths

Not-knowing 3 3 – – 174.47 36.58 0
Not-knowing 6 6 – – 157.10 16.23 0
Not-knowing 10 10 – – 144.14 15.57 3.4
Inertial 3 3 3 0 166.40 41.49 0
Inertial 6 6 6 0 153.23 24.07 0.8
Inertial 10 10 10 0 131.08 19.66 4.6
Spontaneous 3 3 0 3 177.80 39.33 0
Spontaneous 6 6 0 6 147.97 47.80 0.2
Spontaneous 10 10 0 10 132.06 36.30 3.4
Mixed 6 6 3 3 154.87 37.80 0.6
Mixed 10 10 5 5 140.14 29.56 4
Not-knowing 30 30 – – 136.30 13.40 14
Mixed 30 30 15 15 136.50 23.04 15

Note: Thhungry = 171; Threcharged = 181; inertial energy value = 173.

around 4.4 min. The reverse full recharge cycle takes just as long. Each experiment in
the small arena was repeated 10 times and in the large arena 5 times. Evaluation of the
experiments was performed by reading logfiles from the robots. Since all the experiments
demonstrated good repeatability, Table 3 shows only mean values.

‘Not-knowing’ strategy in a small arena. The parameters and results of these experi-
ments are collected in Table 3. A sample run in the ‘not-knowing 10’ experiment is
shown in Figure 7. The influence of energy reduction on the performance of ‘not-knowing’
robots was studied by comparing the results of the ‘not-knowing 3’, ‘not-knowing 6’ and
‘not-knowing 10’ experiments. In ‘not-knowing 3’, the docking slots provide energy for 3
robots, so enough energy is readily available, and the swarm maintains a high collective

1 2 3

4 5 6

Figure 7. Experimental run for the ‘not-knowing’ strategy, with 10 robots. First, the robots execute
regular work (1), until Thhungry is exceeded and all the robots ‘become hungry’ (2). Eventually, all
recharging slots are occupied and the rest of the swarm clusters around the waiting station (3). Some
robots have recharged and the waiting ones again seek a slot (4). As slots are re-occupied, the ‘hun-
gry’ robots again collect at the buffer zone (5). This sequence cycles until some of the robots ‘die’
while waiting or searching (6).
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energy. Doubling the number of agents (‘not-knowing 6’) reduces both collective energy
and efficiency but the swarm manages to stay alive despite inhabiting an environment with
limited resources. In the ‘not-knowing 10’ experiment, where energy is very constrained,
efficiency remains almost equal to ‘not-knowing 6’, but the collective energy is further
reduced, falling below the critical threshold. Also, 3–4 of the 10 robots die, which reduces
the swarm size to 6 agents and leads to an efficiency comparable to the ‘not-knowing 6’ run.

To summarize, ‘not-knowing’ robots offer the best performance when enough energy
is present, marked by a very high collective energy level, but an efficiency of only 38.56%.
Reducing the energy source leads to extreme reduction in efficiency, whereas collective
energy falls slowly.

‘Limited robots’ strategy. Three types of experiments were conducted to examine the per-
formance of the ‘limited robots’ strategy: inertial robots only, spontaneous robots only and
a mixed society of spontaneous and inertial robots. The energetic thresholds used were for
inertial robots Thhungry = 170, Threcharged = 178; and for spontaneous robots Thhungry = 180,
	recharged = 5. The inertness coefficient was set in accordance with the simulated value of
medium inertness. As in the ‘not-knowing’ experiments, three docking slots and one wait-
ing station were made available to the swarm. Table 3 gives an overview of the ‘limited’
strategy experiments.

Limited strategy I: experimental run of an entirely inertial swarm. Inertial robots achieve
almost the best possible efficiency when no restrictions exist on energy input. Since more
work is done, the collective energy level is not especially high but that does not partic-
ularly affect swarm behaviour in the ‘inertial 3’ experiments. Increasing the number of
swarm members leads to the reduction of efficiency and collective energy. However, feed-
back from the swarm and inertness allows the robots to work for longer, which leads to
‘exhaustion’ and the robots ‘die’ even when the swarm has only 6 members. Further reduc-
tion of available energy leads to the collective energy falling below the critical threshold;
many robots ‘die’ and the efficiency achieved is about 20%. Therefore, inertial robots offer
very good efficiency when sufficient energy resources exist but constraining the energy
source leads to the reduction of both efficiency and collective energy.

Limited strategy II: experimental run of an entirely spontaneous swarm. Where sufficient
energy is available to the swarm, spontaneous robots can recharge whenever they wish,
so they recharge frequently and maintain their energy at a high level. However, frequent
recharging means that less work is done, so the efficiency is only about 39.33%. Increasing
the number of agents changes the results considerably: the agents cannot recharge as much
as they want to and so work until real ‘exhaustion’ (Thcrit) sets in. Thus, an efficiency
of 47.80% is achieved, but collective energy falls severely. Further, constricting avail-
able energy further reduces the collective energy, but the efficiency stays comparatively
high.

Limited strategy III: experimental run of a mixed swarm. Since the swarm consists of two
different subclasses of robots, it can benefit from both strategies. A swarm of 6 robots
achieves an efficiency of 37.80% at a collective energy level above the critical threshold.
Within a more constrained environment, both parameters decrease slowly and some robots
‘die’.

Experimental run of a ‘not-knowing’ swarm in a large arena. To test the behaviour in a
heavily energy-restricted environment, two experiments were performed with 30 robots in
the large arena. A sample run of the ‘not-knowing’ scenario is shown in Figure 8. The
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1 2 3

4 5 6

Figure 8. Experimental run of the ‘not-knowing’ strategy with a swarm of 30 robots. All the robots
start the experiment with equal energy autonomy and execute sensor network activities (1). When an
individual’s energy level falls below Thhungry, the robot switches to the recharging role (2). Since all
the robots switch almost simultaneously, the docking station is soon occupied by recharging robots
and the rest cluster around the two waiting stations (3). Eventually, the recharging robots are ‘full’
and the cluster around the docking station dissolves. At the same time, the waiting robots re-start
their search and the clusters at the waiting stations likewise melt away (4). New recharging robots
stop at the docking station and block it. The remaining ‘hungry’ robots again collect at the waiting
station (5).

experimental run is characterized on the one hand by long periods of little or no movement
and on the other by periods of high levels of movement, in which the agents essentially
hinder each other.

Experimental run of a mixed swarm in a large arena. For the experiments with large mixed
swarms, an equal proportion of inertial and spontaneous robots was assumed. The collec-
tive energy and swarm efficiency obtained exactly reflected the behaviour described above.
As shown in Table 3, half the swarm was ‘dead’ at the end of both experiments and the
resulting collective energy was also equal. A difference occurred in the efficiency obtained,
which represents the time in which the swarm was free for useful activities. ‘Limited’
robots worked 23% of their time, whereas ‘not-knowing’ robots managed to work for only
13% of theirs. Since the recharging role comprises waiting, recharging and searching, the
‘not-knowing’ robots spent most of their time halted in clusters, either at the waiting station
or at the recharging station.

6.2. Discussion of results

Inertial and spontaneous robots differ in their reaction to energy reduction. Figure 9
summarizes the results of the ‘limited robots’ experiments.

Experiments with three docking stations and six spontaneous robots demonstrate the
best efficiency of 47.8%. However, the collective energy of the swarm is very low, even
falling below the critical threshold; this energetic homeostasis is unstable. Inertial robots
keep their collective energy level above the critical threshold, but their efficiency is much
lower at 24.7%. Mixing inertial and spontaneous robots provides a compromise – in the
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Figure 9. Comparison between the energetic performance of the ‘limited robots’ experiments,
showing (a) the collective energy level and (b) the swarm efficiency.
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Figure 10. Comparison between the results of experiments with ‘not-knowing’ and ‘limited’ robots,
showing (a) the collective energy level and (b) the swarm efficiency.

‘mixed 6’ experiments, collective energy, at 154.87, stays above the critical threshold and
the robots are free for work for 37.8% of their time.

Figure 10 is an overview of the ‘not-knowing’ and ‘limited robots’ strategies with
available energy restricted. The collective energy level is comparable in both scenarios
but differentiation occurs in the resulting swarm efficiency. ‘Not-knowing’ robots man-
age to work in both environments for around 16% of their time, whereas a mixed swarm
of three inertial and three spontaneous robots achieves an efficiency of 37.8%, and in the
more restricted environment around 30%. So, using a bio-inspired strategy gives the swarm
twice as much time to execute useful activities as a strategy in which the agents follow a
threshold model.

Figure 11 includes a sample for the number of role switches per robot in the ‘iner-
tial 10’, ‘spontaneous 10’ and ‘mixed 10’ experiments where energy is constrained. In a
swarm of inertial robots, each individual follows its behaviour model, which necessitates
long working times followed by long recharge times. Such long periods in each role result
in a low number of changes, with low dynamics at the docking station. All agents behave
similarly, so the number of role changes is almost equal for all members. The only excep-
tions are robots that cannot find the station at all and die while waiting or searching (e.g.
robots 2 and 8 in Figure 11(a)). The role dynamic is completely different for a swarm of
spontaneous robots. Their behaviour model requires short recharge times, so role switching
occurs more often.
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Figure 11. Role dynamics in experiments with ‘limited robots’: (a) ‘inertial 10’, (b) ‘spontaneous
10’ and (c) ‘mixed 10’.

Two robots did not find the docking station (3 and 5 in Figure 11(b)); but also a dif-
ference in the resulting behaviour developed in the rest of the agents. Some (robots 4, 9,
10) changed between the two roles more often than did the others (e.g. 7). That is, robot 7
specialized in one of the two tasks and avoided switching between them, whereas 4, 9 and
10 usually switched. Such emergence of generalists and specialists in the swarm is clearly
visible in a mixed society. As Figure 11(c) shows, the distribution of the number of role
changes is highly non-uniform. Since robots 1–5 are all inertial, it may be expected that
all will exhibit a similar number of changes. The same holds for the spontaneous robots,
6–10, where small differences may also be expected. But the resulting behaviour is com-
pletely different. Role dynamics emerge even with the inertial robots – robot 2 changes
as often as would a spontaneous one. Moreover, spontaneous robots increase their dis-
crimination: robot 6 switched very frequently, whereas robot 7 managed to recharge just
once. Specialists and generalists emerge from the ‘crowd’, even though the implemented
behaviour model stays the same within the subclasses.

Figures 11(c) and 12(a) show the ‘not-knowing 10’ and the ‘mixed 10’ experiments.
‘Not-knowing’ robots distribute the available energy equally among the membership –
everyone receives as much as it needs. In a mixed society, everyone gets as much as
the society gains. So, ‘not-knowing’ robots change their roles less frequently and no
individualism ever develops. Spontaneous and inertial robots interact and switch more
often between roles. Some are specialists in one of the two roles, others are generalists
and can do both. Regardless, the choice of which role to play is highly dynamic and
situation-dependent, which seems to be the premise for an adaptable and efficient society.

Experiments with large swarms in an extremely energy-constrained environment
demonstrated similar role dynamics. Figure 12 (b) and (c) shows a sample of role dynam-
ics for two experiments using ‘not-knowing 30’ and ‘mixed 30’ strategies with 30 robots.
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Figure 12. Role dynamics in experiments with ‘limited’ robots: (a) ‘not-knowing’, (b) ‘not-
knowing 30’ and (c) ‘mixed 30’.
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The ‘not-knowing’ swarm is characterized by a low number of changes, while the ‘lim-
ited’ robots demonstrate completely different role dynamics. Since the spontaneous robots
recharge only for short periods, the exchange rate at the docking station is high. Because
of the irregular distribution of recharging and working roles within the swarm, the robots
do not all try to reach the station at the same time.

7. Conclusions

The comparison of energetic performance between a swarm executing a simple threshold
model and a swarm following a bio-inspired model showed that, within the same level of
energy homeostasis, the swarm efficiency achieved �s was doubled by the use of inertial
and spontaneous agents. Real robot experiments confirmed that a bio-inspired approach
minimized NR1 robots recharging. This optimized NR2 and tR2 , diminishing the energetic
bottleneck and delivering better swarm efficiency. It was also demonstrated that adaptation
of individual thresholds for the critical and hungry states Sc and Sh, by changing the pri-
orities of tasks Pr(Task), leads to better collective performance. Finally, the experiments
confirmed that a variable swarm density, Dsw = 3.2–18.63, leads to unscalable behaviour
(e.g. a bottleneck around Dsw

crit), but achieves energetic self-regulation through robot death.
This mechanism increases collective energetic efficiency. In addition, the following points
are considered:

• Collective knowledge greatly influences the energy-foraging performance of robots,
whereas exact localization abilities do not have much impact.

• Social robots, as in the ‘best’ and ‘average’ strategy, cannot satisfy the requirements
of an energy-foraging strategy. They achieve very good swarm efficiency but a poor
collective energy level. The high tolerance of the needs of other robots leads to
self-destruction. The agents work until exhaustion and do not try to preserve their
energy. Thus, many agents ‘die’ energetically and collective homeostasis is achieved
only at a very low level.

• Egoistic robots, as in the ‘not-knowing’ strategy, are also not able to satisfy the
requirements. They maintain their collective energy homeostasis at a high level but
the swarm efficiency obtained is minimal. In this society, the agents try to work as
little as possible. Although it delivers an excellent energy homeostasis, this society
is unusable.

• In environments where sufficient energy is available, inertial robots outperform
spontaneous robots, since in a society of inertial robots, energy is divided equally.

• In environments where energy is constrained, spontaneous robots outperform inertial
robots. In a society of spontaneous robots, individuals acquire as much energy as
they need.

The study of role dynamics showed that, although following the same behavioural model,
some agents preferred to remain in one of two roles. Others swapped roles more fre-
quently. Such behaviour was clearly observed when the swarm had to survive in an
energy-constrained environment. Since such collective behaviour is not preprogrammed,
we can say it emerges from specific spatial interactions in the swarm. The emergence
of specialists and generalists is a very important characteristic of a swarm society and
although the question of how it is provoked is hard to answer, passive interactions within
the swarm and spatial distribution of agents within the arena are two possibilities.
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To summarize, the adoption of bio-inspired spontaneous and inertial behaviours as
a strategy for energy foraging based on a kinetic model coordinates the energetic needs
of individuals to obtain a better collective performance. This coordination is achieved
without central control and complex communication, using a very simple algorithm. The
bio-inspired approach addresses only the distribution of working/recharging roles and
proves that adaptive role distribution can achieve a major improvement in a swarm’s
energetic performance.
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