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Abstract question about "individual aspects” of collective perdeipt
Is a microrobot able to provide enough sensory information
for the collective perception ? Which sensing and processing
steps should be done individually and which collectively ?
For answering these questions we designed and proto-
typed a sensor system for our own test microrobot. This
is is actually larger as envisioned in I-Swarm project how-
ever is very cheap and easy to reproduce without specific
equipment. Based on this prototype we can investigate ques-
tions about "individual/collective intelligence” so thie re-
sults, e.g. principles, methods, algorithms can be latptam
mented in the 1mrhrobot. The size of the sensor system is

In this paper we present the research results in the
field of perception for real microrobotic swarm.
The proposed hardware and software solution uses
IR-based reflective measurement for individual per-
ception and the Dampster-Shafer evidential reason-
ing for hypothesis refinement in collective percep-
tion. Especial attention is paid to a reliable identi-
fication of encountered geometries and a reduction
of local communication. Based on the experimental
results we make a conclusion about cognitive ca-

pabilities of individual microrobots and the whole 23x23x5mm. It uses the Megabitty board (233x 2mm)
swarm. with Atmel AVR Mega 8 microcontroller, having 8 kB ROM
and 1 kB RAM [Megabitty, 2005. Besides perception,
1 Introduction the board supports 6-directional robot-robot and hosttob

communication, with the average communication radius 0-

many areas of research. Molecular-scale or nanotechnolo%ﬁ'omm (with special solution for deadlock reduction) and a
ical devices jumped from science-fiction novels to researcfi@ximum of 300mm. The sensors are also used for prox-
papers. Even the today’s technology allows creating cotaple Imity sensing in navigation. Th_e communication subsystem
autonomous systems, such as robots, in the size of 1 rm for a large microrobotic swarm is described Kornienkoet

demonstrated by a progress in the I-Swarm prdjestvarm, al.,, 2004. In this paper we present the development of the

2003 2007, the swarm of thousand such microrobots gets reperception system for the sensor board and the problems of

ality as well as come into the reality impressive appliaagio individual and coIIect_lve perception in microrobotics.
of this technology. The rest of paper is organized as follows. In the next two

The scaling down of the hardware influences almost alfections the problem of individual perception and the devel

important parameters of microrobots, as e.g. running timeoPment of IR-perception system are described. Then, we dis-

communication distance and channel capacity, compugtion CUSS the nonlinearities of this perception and the algasth
power, movement and so on. However we ask ourselves abolf fe.ature extraction and surfaces classmcatlp n. Thethst
intelligence” of such a microrobot; is it also scaled dowa s sections are devoted to the problem of collective classifica
that we get finally some "stupid moving thingKornienko ~ and preliminary experiments.
et al, 2004 ? Since many years there exists in the sci-
entific literature the opinion that "artificial intelligeatfor 2 Problems of individual perception in
very small systems drifts towards "collective artificiateh microrobotic swarms
ligence”, like those in social inseciBonabeaiet al.,, 1999. _ N )
For collective systems the "individual intelligence” getsne ~ AS mentioned before, the recognition of large objects by
pre-intelligence form. The questionighich minimal degree  Small microrobots is primarily performed in a collectiveywa
of individual intelligence does allow growing “collective- ~ However the prerequisite for collective perception is the s
telligence”? fape identification and classmcat!on thatis perfqrn‘_ne_ddngke

In this paper we consider such an aspect of cognitive infmicrorobot. We name further this process as individual per-
telligence as perception. In a microrobotic swarm the sfze oc€ption. From the collective perception point of view the fo
a robot is essentially smaller than the size of most environlowing types of surfaces are required to be identified:
mental objects. The recognition of these objects is priyari 1) infinite-size surfaceffrom a robot's viewpoint), as huge
done in collective way. However here we encounter the samebjects or borders;

Miniaturization represents now a very important trend in
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2) finite-size surface& microrobot has to calculate the visi- However the fusion of perception and communication using
ble size of a surface) which are classified, at least, intdlsma IR-devices does not find too many applications, perhaps be-

medium and large; cause of a high nonlinearity of IR-based perception and-avai
3) convex and concave corners ability of more appropriate solutions in the domain of usual
4) 2-side and 3-side concave surfares robotics. Therefore the microrobotic domain of integrdfed

5) one-surface/many-surfaces geometry solution (perception, communication, navigation) is more
Additionally, the microrobots have to be able to perform theless unexploited.

following activities: The IR-based perception consists on sending an IR radia-
1) detection of holes (gangways) in surfaces tion beam and receiving the reflected light. The intensity of
2) classification of the perceived surfaces into defined ckassethis light contains information about the geometry of reflec
and providing a probability of correct classificatipn ing surface (primarily a distance between IR-receverfemit

3) recognition of robot’s own position in relation to a corner and surface). As mentioned, the IR-based perception is
(left/right from a corner) or even its own slope to a surface. highly nonlinear. The most large influence on accuracy of
When each robot identifies the surface in its own sensind€rception exerts the resolution of the distance sensahein
areal, further collective processing consists in fusireiviial- enter of radiation ray, the intensity of IR radiation istirig
ual observations into many hypotheses and collectiveiitent €St Closely to the bounds of this ray, this intensity become

cation of most probable hypothesis about the observedIobje?r""d“"’IIIy degraded (Figure 1). The main component of a re-
(see also[Ye et al, 2007). lecting light consists of the energy of the central radiatio

Returning to the issue of individual perception, we ident-Stream. However low-intensity "secondary streams” spread

) S ; o the reflecting light so that object’s edges and gaps between
fied the following implementation possibilities: objects get non-recognizable. With a poor resolution of dis

1) vision-basedway by e.g. using some small micro(faced)- tance sensor, small geometrical elements cannot be pedceiv

cameras, ) , , and so cannot be used as features for recognition. Therefore
2) reflection-basedway by using laser or infra-red light,

ultra-sound etc.;

3) wavelength-basedvay such as color sensing;

4) by usingspecificchemical, temperature, vibration, mag-

netic and so on sensors (we do not consider them here).
The vision-based way represents the most information in-

tensive mode. However its application in microrobotics hasRma!

several difficulties caused by very limited computatiore ¢

pabilities and small memory. Algorithms of image process-

ing are difficult to be imp_lemented in this hardware. More- Figure 1:Perception by using the IR bea,yq. recognition dis-

over due to very small size we prefer to use the same S€Rance, D, s, O... distance/object resolutior{a) Thickness of radi-

sors for navigation (proximity sensing and obstacle detecyiion beam and influence on the size measurengeponlinearity
tion) and communication (robot-robot and host-robot) pur-in the identification of many-surfaces geometry.

poses as well. Finally, the geometrical features from deep i
ages are essen_tlally more useful f(s) rgizg?sgmeeﬁtemrggpégénThugor perception are suitable_ only such IR-emitters that taave
the vision-based as well as wavelength-based ways, althou s small as possible opening angle of the beam. )
they have found a large application in mini- and usual robot- Secondly, the accuracy of measurement depends on the dis-
ics, unfortunately are less useful here. The reflectiorethas tance to a reflecting surfateln Figure 2(a) we demonstrate
perception uses the principle of sending and receiving -a sighis effect for the developed sensor system. Nonlinear-accu
nal, that can be also used for navigation and communicationacy essentially influences the further recognition ofdees.
Considering different alternatives for reflection-  The reflecting light is also very sensitive to the color of re-
based perception we focus primar”y on laser, e|ectro.ﬂecti0n ObjeCt. In Figure 2(3.) we show the distance measur-
magnetic/inductive and infra-red systems.  Ultra-soundng values for white and gray objects. Further in experiraent
systems do not satisfy the size limitation. Though the lase¥ve use only white color objects. The distance measuring also
provides the most exact measurement and long range, thef&pends on the object’s slope to a radiation ray. In Section 4
are several technical difficulties to use it with the mictwso e discuss in detail these nonlinearities and suggest spme a
So, choosing between electro-magnetic/inductive andinfr proaches to absorb them.
red systems, we prefer the last ones due to their simplicity, Since we did not found a suitable integrated IR-solution
relative long working range and small energy consumption. for the microrobot, we decided to develop our own required
Generally, the IR-systems are recently dominant in sohardware and the corresponding processing algorithms. In
called small-distance-domain, as e.g. for communicat@n b the next sections we describe them.
tween laptops, hand-held devices, remote control and @ither
The IR-solution is not new in robotic domain, see ¢ube, The dependence between reflecting light and distance is also
1994, [Suzukiet al, 1999. There are many approved nonlinear however this problem can be easily solved by a look-up
schemes or even industrial sensors for IR-communicatiortable or some approximation functions.
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Figure 2:(a) Dependency between ADC values of emitter voltage on phototransisttnarditance to reflecting object. Shown are values
for the white reflecting object (white paper) and the grey reflecting obgre/(cardboard);(b) The used features of IR-diagrams relevant
for identifying the surfaced(c) The "thickness effect” of radiation beam by scanning a gap with differem@ss The distance between a
microrobot and the gap is 70 mm.

3 Development of the IR-based perception and the acceptable nonlinearity of sensing. Although the IR
system emitter is relatively large for the microrobot (8% mm), the
specific construction of the chassis allows to hide it insie

The main requirement on the IR-perception is given by a$obot
small as possible opening angle of the radiation ray. Addi- Since IR-emitter and receiver are non-integrated and are

tionally, IR-emitter has to provide a high energy beam, gein placed side by side in the chassis, they have to be optically

let t im . Finally, IR-emitter and receiv ! o ; .
zﬁoeulg %g gglgc:g sveoprk inagi%mmjn?/clatioi mo?jea drece isolated. The optical isolation of the emitter allows alse r

The perception system of the microrobot is a part of IR-4U¢ing the opening angle of the beam up to 10IFeduces

system used for proximity sensing, obstacle detection, dis2/SC & Perception distance). However the main problem here
s to provide similar optical characteristics of isolatifmm a

tance measurement and communication, as well (Figure 3); . ; : .
For the perception and objects recognition we use only thé&/9€ number of different microrobots in a swarm (to avoid

ater the problem of individual calibration of each micrero
bot).

The principle of object recognition is the following. As
soon as a robot detects (by means of proximity sensors) an
obstacle in front of itself, it switches on the high power IR-
emitter and after 1ms delay (needed to get reliable reflgctin
light) measures voltage on the emitter of phototransidtoe
dependence between emitter voltage (after ADC) and the dis-
tance to an object is shown in Figure 2(a). Generally, this
sensor perceives distances up to 300 mm. However accuracy
(b) of measurement is different. For the pédistance-accuracy

where A is the accuracy, we obtained the following values:

Figure 3: (a) The megabitty board and the sensors board used in?’o'100 mm-— A=1 mm, 100-150 mm- A=3-5 mm, 150-

the prototype of a microrobottb) The 6-directional sensor system 200 mm— A=10-15 mm and after 200 mm» A=30-50
for directional communication and proximity Sensing_ mm. Therefore, the I’easonab|e meaSUI’Ing dIStance fOI’tObjeC
recognition lies within 30 mm-100 mm (with the accuracy of
distance measuring sensor, so that only this sensor is fuk-2 mm).
ther considered. This sensor consists of a receiver with a Not only the resolution of the IR-sensor is important for
wide opening angle (used also for communication and proxscanning the objects. During scanning, a microrobot turns
imity sensing) and an emitter with as small as possible bearon some degrees. The more exact is this turning, the more
angle (used for perception and long-range communication)recise is the spatial resolution of sensor data. Micrarobo
We utilize the Si phototransistor TEFT4300 (6@eak sen- does not possess any devices allowing to measure positions
sitivity 950 nm) and the high power GaAs/GaAlAs emitter and orientation of chassis or wheels. Therefore there i onl
TSALG6100 (radiant intensity-80 mW/sr, 20, the real open- one way to rotate a robot, namely to turn the motors on and
ing angle is of 18-22, 950 nm). This combination is a result after some delay turn them off. This delay has to be so cho-
of many experiments with different sensors (over 30 pairs)sen, that a robot rotates on some fixed degree. The motors
with integrated receiver/emitter like SFH9201, as well asare controlled through the H-bridge S19988, that can change
non-integrated ones. The TEFT4300-TSAL6100 pair demona polarity of supplying current. Choosing normal polarity f
strated the best spectral coupling, the longest sensitandis  one motor and inverse polarity for the second motor, the ro-
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Figure 4:Jasmine”, the prototype of the microrobot, scans different surfasd®red is the distance to surfaceg) Scanning of the finite-
size surface, object 48 mnfh) Scanning of the convex surfadg) Scanning of the 3-concave surfadd) The IR-diagram for finite-size
surface;(e) The IR-diagram for convex surfac@f) The IR-diagram for 3-concave sides surface 0k95x95 mm;

bot can rotate without changing its own position. In this wayminimal distance is measured as a perpendicular to a surface
we get relatively shift-errorless deep images. After soesest  This feature allows calculating the visible size of a susfhy

we achieved the resolution and accuracy of rotatidiftdk-  using trigonometric relations;

ing into account different friction between weels/chassid 3 The left and right slopesdenoted as; and~, are use-

floor surface). ful for identifying the size-type of the surface (unlimitésig,

In our experiments, when a robot detects an obstacle ofedium, small). They are calculated as slopes of the approx-
the distance of 70 mnt- 10 mm, it stops and then rotates jmation linesS;, S,. The slope denotes also the "degree of
60 left. After that it scans the obstacle with the d|StanCEa distance decreasing” and enable us to |dent|fy the Sed:a”

sensor by rotating 120right. During this scanning it writes  "convex surfaces” that cannot be recognized in the trigono-
the obtained values of distances each 1 degree into an integgetrical way;

array. In this way we have 120 values describing a visible4 Th . " » ;
. . e position of the "center” of the IR-diagran®;,, ..
geometry of the encountered obstacle. In Figure 4 and 5 WE elation to the scanning angle ("0, origin point on the X

demonstrate some geometries of encountered obstacles a&%s). Displacement of the center points to a slope between

the scanned surfaces. the front of robot and surface. In this way we can identify a

. f d . directional orientation of the microrobot.
4 Features extraction from IR-deep images Now we formalize the nonlinearities mentioned in Sec-

After performing the first experiments, we faced the follow- tion 2 and present their impact on the corresponding festure
ing challenge: which features of the obtained IR-diagrams; Nonlinear thicknessf the IR radiation ray and so differ-
are relevant for identifying the geometry of the surfaces/? B ent distribution between high-energy beam and low-energy
analyzing the IR-diagrams in Figure 4 and 5, we find the fol-neam. The first effect of this nonlinearity consists in sprea
lowing features as representative and useful in the IReasegqges (Figure 2(b)). This nonlinear effect can be absorbed
individual perception (Figure 2(b)): by calibration. The second effect is shown in Figure 2(c).
1. The anglex, which represents the scanning angle betweert scanning many-surfaces geometry (a gap between objects)
the first visible edge and the last visible edge of the surface a robot cannot reliable differentiate between 2-concave su
2. The peak intensity of the diagrath,.... This corresponds faces and surfaces that belong to different objects;

to the maximal intensity of reflecting light and, in turn, keet 2. Nonlinear measurement for small distance&s known
minimal distancel between the surface and the microrobot.from other IR-distance measurement systems (€gprari

For the most types of surfaces (beside convex corners) thiand Siegwart, 2043, the maximal intensity of measurement
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Figure 5:1R-diagrams for different types of surfacels a distance to surfacega) "Infinite-size” surfaces with flat geometryb) Convex

round (external diameter 125 mm) surfade) Many-surfaces geometry {1convex corner 12260 mm and 2¢ concave corner 695
mm), robot positioned 70 mm before the middle part.

lies in 10-25% before the front of IR-receiver, after thag th tion. Now, based on the discussed features and nonliresariti
intensity goes down (therefore small distances cannot lze mewe can briefly analyze the types of surfaces.

sured by these systems at all). Due to the specific restric- 1. Surfaces with flat geometry.The flat type of geometry
tion and the application of high-power GaAs/GaAlAs emit- is primarily characterized by only one peak value on the IR-
ter, we removed this effect. However the surfaces that$ie le diagram. Finite-size surfaces are also characterizedrgg la
then 40 mm away from a robot are represented only by valleft and right slopes and scanning angle< 120°, Fig-

ues 245-250. In this way, for close measurement ( 30 mmyre 4(a). The sizd.,;; can be calculated a&ltan («/2),

we get a flat horizontal diagram. Another undesired effectaking into account the "fuzzi edge” nonlinearity.

in small-average distances (40-70 mm) consists in a sponta- "Infinite-size” surfaces (Figure 5(a)) have small slopes of
neous decreasing of peak intensity (this is observablelin alR-diagrams andv ~ 120°. To absorb the nonlinearity of
IR-diagrams in Figures 4 and 5). We cannot identify the naslopes for small and large distance, we apply the polygonal
ture of this nonlinearity and assume multiple IR-reflecsias  approximation[Pitas, 1998 and use in calculation the rela-

a reason for them; tionyg,13 /Sy instead of simpleyy,.;y, whereSy,.;; is the

3. Nonlinear accuracyof distance measurement. This re- length of approximating line. In the performed experiments
quires nonlinear correction (it is done as a look-up tabfe) othe probability of correct identification is very high andeth
trigonometric relation in dependence of distance. Howevefccuracy of size calculation is of 5 mm (15 mm in the worst
this nonlinearity is very "tricky”. Even when a robot starts Case). ) )

a measurement in the "good” area of 40-120 mm, a part of 2. Surfaces with convex geometry.Surfaces with con-
geometry can lie over 150 or 200 mm away. The effect ofv€x geometry possess also only one peak value, however

this nonlinearity appears in unreliable identification afny- ~ larger slopes then flat geometries. This type of geometry
surfaces geometry (Figure 5(0) "|left to 1st. Corner"); has to be identified before the calculation of size, which has

4. Nonlinear rotationof the robot. This can lead to different "0 SENse in this case. There are several types of convex

. ; try: convex corners and convex round surfaces (Fig-
left v, and righty, slopes even for symmetric surfaces. The 39M€ .
mos’Y[leasiestgsoTGtionphere is to caligra;eand o ure 4(b)), convex many-surface geometry (can be recognized

i o i . . only collectively)(Figure 4(f)). We identify this geomgtr
5. Nonlinearity in measuring convex surfaceshe identifi- 1y, Yir3/Strsy In the IR-diagrams. The difference between
cation of all types of convex geometries is performechby  them points to a position in relation to a corner (left to a cor

and~,. The difference between slopes for e.g. round objectg,er, right to a corner). The probability of correct identic
(Figure 5(b)), convex corners (Figure 4(b)) and finite-$iae  tjon of convex round geometry is very high, however convex
objects (Figure 4(a)) is small, moreover due to a nonlineagyrners are often classified as flat geometry. One approach to
intensity diagram, these slopes change with distancess Thhyid this problem is the so-called "active exploratiorifi(s
problem has some basic character and we hardly belief thafie move towards the surface and scan again induces the ap-
with all nqnllnearmes of IR-perception we are able to el pearance of a large "flat region” in the peak intensity which
able identify the type of convex surfaces. points to the flat type of geometry).

The main problem of these nonlinearities represents the ne- 3. Many-surfaces and concave geometries.Concave
cessity to maintain many look-up tables for correctionss;Th geometries manifest primarily as multiple peaks in IR-
in turn, is limited by a small memory of Atmel microcon- diagrams. Based on the number of peaks we can differenti-
troller. The assumption is that this problem can be solvedte between 2-concave (concave corners) and 3-concage side
in collective way. We can reduce the accuracy of individ-geometry (Figure 4(c)). Concave many-surfaces geometries
ual recognition (so that to satisfy all hardware constgitili (Figure 4(b)) can be also classified by one robot. They have
such a degree which still allows a reliable collective retog one peak value, however multiple left or right slopes. Many-
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Figure 6: (a) Distributed architecture for collective observatiofl)) Spatial distribution of the robots around the observed objéc};
Geometries for matching and objects classes.

surfaces geometry can also be composed from surfaces thagpotheses for the further fusion.
belong to different objects. Generally, concave geonetrie i
can be identified with high reliability, however some fine-dif 9-1 Object model
ferentiation between them is not always possible. Given the limitations on the sensing capabilities of theotsh
4. Estimation of probability. Since the robot cannot reli- object classes can only be defined in terms of their geome-
able classify the type of surfaces, it calculates a proltgoif tries, as mentioned in Section 4. Figure 6(c) shows the 2D
correct classification. The calculation is doneinthe folllg ~ geometries of the four object classes which will be used sub-
way. We measure the possible valueswtl, 7,13 /5¢1;3,  sequently. Once robots are situated around the object, they
Pimaqe and estimatd.,;, for all types of surfaces. The robot can estimate the local properties of the object as seen from
uses last square metrics to calculate the relation between ttheir current positions callediewpoints The actual mea-
measured values and these presaved types. For collective pgurement obtained from a viewpoinican be noted aS(v);
ception a robot sends all possible classifications thattteve S : V' +— featurevector and represents the output of the
probability over 30%. distance sensors. Given an object class, it is possible-to es
Through the presented features of the IR-deep image wiablish the expected sensor outputs for a number of views.
tried to classify several surfaces and to identify the di@ss A number of Viewpoimgn{ji for each object clas#; are
tion probability as well, as base steps or components requir chosen, along a trajectory situated in the center of the mea-
for the individual perception. surement domain, and noted @ = (vX). The corre-

n

sponding expected measurements for objects of dlasare

5 Collective Perception S (TR = <S (vf) Loy S (vK;;l_>>. Therefore, the ob-
The described in the previous sections individual percep- ) v
tion provides the sensor input for the collective perceptio J€Ct model for a clas&’; incorporates an ordered sequence of
The approach for collective perception presented here prodews for differentsuccessivpositions around objects of that
poses that each robdalks to its neighbors to exchange C€lass. The starting position is arbitrary: only the ordgtis
information about the surrounded object. In this task we'elévant. The direction — clockwise or counterclockwise —
limit ourselves only to the problem afollective classifica- can be chosen arbitrarily, but must be the same for all object
tion [Pradier, 200h The robot possesses the objects modelgnodels. _ _ _ _
and have only to order the collective sensor input to one of Additionally, object models include information about the
the presaved model. reachability of different viewpoints, taking into accounuth
The distributed architecture for collective perception isg€ometrical constraints and the limitations imposed by the
shown in Figure 6(a). There is no privileged agent with acommunication capabilities of the robots. It is noted as
special role: all robots perform the same operations. The su W¥: = uf,u,f)‘ v,f reachable from;f"’ } Fi-
gested method is homogeneous, i.e. all robots act the sa

: rTﬁ%lly, the corresponding distances between viewpoints in
and there is no need for a leader. Due to the homogeneoq,wl are added to the object model,&s : U x U — R.

architecture the approach is robust, scalable, moreower né - e set of all canonical measurements — corresponding to
roboFs can join the team dy”a”?'ca"y without any need t0ge(q of ohservable features, callespects— in the model
readjust any task assignment. Figure 6(b) shows how robots K ) .
are deployed during collective observation. There are twdS notedA = {5 (Ui ])} and its cardinality can be re-
possible implementations for the propagation of hypottiese duced by clustering the expected measurements. In that
a single agent collects the information needed to identify a case, a sequence of canonical views could match several
object by moving around it and performing the sensing oper{identity, position) pairs.

ations; a single agent acquires local evidences and prtgsaga  The goal of collective classification in a swarm of robots is
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to estimate that clags; the object being observed belongs to. mass to a set including both.

Whenn,. robots are situated in an area surrounding the object The probability mass assignmerftinction associates a
(measurement domain) in positioas, . . . ,w,,., they are or-  probability mass to the sets in the power-88tof ©; it is
dered implicitly depending on their position around thesabj therefore a functionn : 2° — R verifying the following
as the perimeter of the latter is explored in a given trigoedm  propertiesm () = 0,0 < m(X) < 1, > e m(z) = 1.
ric direction. Given these positions, the robots will measu The subsetgz;} of © such thatm (z;) > 0 are calledfo-

(S(w1),...,S (wn,)). The proposed collaborative classifi- cal elementsthe union of those subsets is termeate of the
cation method will try to estimate the corresponding canoni probability assignmenta.
cal viewpoints(vf(q), e ,vff(;; )> given the above measure- Dempster's orthogonal sum. Two different sources

of information will yield different mass distributions:;
b_and mo. Dempster'srule of combination or orthogo-
nal sum can combine them if they are relative to the
same FODO©, according tom = mj; @& mg, m(X) =

ments; the end result, namely the cl&Ssthe object belongs
to, is implicit. This means that not only the class of the o
ject, but also the relative positioning of each robot can be

obtained. ; U

Without any other a-priori information, and based only onf Lxinx,=x M1 (X1) ma <X2)'1K is a normalization term
the features observed by a robot, the latter can already-genejefined ask = . which
ate an hypothesis regarding its current viewpoint, andianpl 1- mexzzm m (X1) ma (X2)

itly which object it is observing, if the matched view is only normalizes the new probability masses so that their sum
present in that object model. If the observed features matci$ still unity. It can be seen as a measure of the degree
closely the features corresponding to a view that is unique tof conflict between the two sources of information. When
an object class, the latter can be retained as a likely hgsath > x, nx,—p ™1 (X1) m2 (X2) = 1, the information is com-

for the whole object. pletely inconsistent and it is impossible to integrate e t
orthogonal sum is then undefined.
5.2 Hypotheses fusion Hypothesis refinement. General, non-basic hypotheses

: , . . are notedH'v* = {(ay,...)|ar € A}. It is important to

By observing the object from a given position, a robot can- = thata,, could {c(or]Fesp())'ndk o tge output Prom several

2ﬂgugﬁrlirﬁteetéfﬁm?r!’eﬁﬁ?%gﬁg()ttr]hfz%séc?&;ﬁ;alg ttct"sTuﬁer}oqanonical viewpoints. The set of all possible hypotheses is
9 ) gs to. Noted H. Clearly the sequences of canonical measurements

formation obtained from different measurements should b%an only correspond to valid view sequences in some object

fused via exchange of hypotheses between different robot L ) : .
Amongst the many fusion processes introduced in the Iiter?mdel’ Impossible sequences, such as those having views tha

ature[Abidi and Gonalez, 1992; Hall, 1992: Klein, 1999 cannot belong to the same object, will not be generated.

the Dempster-Shafer (DS) formaligiHutchinson and Kak In %ganeral,r? robot will _prhobpagate itbs cu:rent l;)]eliefs_about
: . : ) e object to the “next” neighboring robot along the perienet
1994 was retained because it does not require a-priori clasg:c the object — initiallyrm (HO). When this information is

probabilities and is able to capture the notion of uncetyain Nt the receiving robot can the followina:
The often-cited drawback of the DS method is that its Com'sf)elief gf &%epre\?ioas?oga az:;:ﬁs)s. € following:
. ; X - Jo oty :
plexity grows exponentially with the cardinality of the ipri distance to the robot whose message is being recelyed

itive hypothesis set. However, due to the way hypotheses " : ) .
are generated from the object models, the complexity can be its own beliefs about the observing part of the object

) . HO).

proven to be polynomidHutchinson and Kak, 1992 s ( ) _— )

Dempster-Shafer (DS) evidential reasoni&afer, 1976 Tgfh esDi Se mSp esttser i?lha;er c O(;(qamatt)ilggtlofr;ar;uele Offordi stz\:/\(/ac;nr;]gnt
is an extension to Bayesian inference that allows each sour® b

i i ; i i 2w, =, M (Hi) m (Hj)
of information to contribute only to the evidence it has gath ,,, H,) = iNH;=Hn is  slightly
ered, without overcommitting or trying to make hasty cheice L= minm,— m (Hi) m (Hj)
based on incomplete information. The Dempster-Shafer apmodified to use the information about the relative
proach allows to express the lack of information by sepagati positions of the robots as follows. Given an hy-
belief for a proposition from its mere plausibility, assig;m  pothesis set H", the refined hypotheses will be

probability masses to sets of propositions in such a way that/™+! = {U(h®a)lhe H",a€ A,h®ac H},

the latter is free to move to any subset. where the last condition means that the new view se-
Probability mass assignment. Information sources can quence must be possible for at least one object class.

distribute probability masses among subset®pivhere®  The operation® : H x A ~—— H is defined as

is the set of all statements about the possible outcomes ofla ® = = (hl, T Y SN £ o ,x), where the

random experiment. It is represented by tteme of dis- viewsa,,,,...,an,, are a “filler”, andz is the view that is

cernmeni{FOD). The FOD is a set of mutually exclusive and to be added to the sequence. An additional restriction can
exhaustive statements namsdgletons When a probability be imposed to theb operation, namely that the filler has
mass is assigned to a set of singletons, it is free to moveyto arto be no longer than some arbitrary number of viewpoints
subset. Consequently, assignment of probability ma$3 to k£ with p < k in the above expression. The output of the
represents ignorance, since the probability mass can move functionU (k) is defined as the shortest hypothesis equivalent
any element oB. When a source of evidence cannot differ- to h, that is, an hypothesis that corresponds to the same
entiate between two propositions, it can assign a prolabili (object, offset) matches.
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Algorithm 1 Hypothesis refinement (pseudocode). can be encoded in at moBbg, | K;|] + |2log, max; n§

functionnew_hypotheses(incomingessage) bits. The amount of information transmitted fér hy-
in_hypotheses = decode(incomingessage) pothesis is directly proportional to the latter, resultimg
new hypotheses %} k ([logy 32, n57 + cpm) bits normally, wherec,,, is the
for hypothesis in ichypotheseslo amount of bits needed to encode the probability mass itself.

for feature in initialfeatureestimatesio
if existssuccessor(hypothesis, feature)
for succ in successors(hypothesis, feature)
pm = hypothesis.pm * feature.probability *
distancefactor(incomingmessage.distance, succ.dist)
if succ not in newhypotheses
add succ to nevinypotheses with p.m. pm
else
add pm to the probability mass of succ in naypotheses

end endfor endif endfor endfor Linear encoding. If a simple linear, fixed-point scheme
trim-hypotheses(newypotheses) is employed, and the resolution is chésen to be a fraction of

total_pm = sum of all prob. masses in n otheses . — | :
for h)?pothesis in neweypotheses awp the average probability mags, as many aglog, (£)] bits

; _ would be needed. For areasonable value ef 10 andny =
r(;ﬁer?tr:]:viﬁ%rgtﬁegg?m endfor 60, a fixed-point encoding would requiféog, (10 x 60)] =
endfunction 10 bits per probability mass.
Dynamic range compressionTU-T G.711[ITU, 1984
introduces twacompressioralgorithms based on the follow-
The new probability mass assignment is calculated witing key idea: the signal is compressed according to a log-
m’ (h?“) =Y prweenr+t m1 (K" ma (2) € (dpre, dimodet) arithmic expression. The simplest onejaw, applies the
nily m/(h?*l)z - _ transformy = sign () %, —1 < x < 1 whereyu is
m (h) = S () where an additional normaliza- .ynsen according to the desired output resolution: for & bit
tion is required due to the usage of the distance termu = 255. The similarity with probability mass encoding is
& (dpre; dmodet)- The latter reuses the known distancesstriking. Indeed, based on thelaw expression, probability
between the last canonical viewpoint bf and the view- values can be encoded usitt{m) = onIn(I+2"—1)m) oo

Implicit encoding. Only hypothesis selectaran be sent,
indicating which hypotheses are actually transmitted asel a
guence of probability masses. It consists§f bits: then-th
bit specifies if the probability mass of the hypothesis whose
identifier isn is attached to the message. In order to trans-
mit k hypothese$™, n’ + kc,,, bits are needed. Therefore
this encoding approach is only practical whep> 1, that is,
when a large number of probability masses are to be transmit-
ted, so the overhead is amortized.

. . . nln(2)
point that is chosen to match ¢ is taken ("2‘5 tf‘f' normal hat the encoded probability mass fitsrirbits, and the dis-
e tortion ratio is minimal. Figure 7(a) shows the minimal rep-

model

o 1
dlsmbuuong(dp”’d”?"d_el) = Vrydmoaet - ) resentable probability mass for different encoding leagth
whose standard deviation depends on the expected distance,y, qhesis set compression.Regardless of the method
to cope with the increasing inaccuracy as the latter growsyqeqtg encode the hypothesis set, the cost, in terms of &moun
in practice, values around ~ 0.5 yield good results. The ¢ intormation to be transmitted, grows with the number of
overall process is described in Algorithm 1. hypotheses propagated. It is thus desirable to minimize the
. . . cardinality of the hypothesis set before transmission. s Thi
5.3 Hypothesis encoding and compression can be performed either lyimming (discarding hypotheses
Once a number of robots have acquired information about thwhose probability mass is comparatively or in absolute serm
object they are observing, hypotheses can be refined througinall) or by coalescing(grouping several hypotheses into
exchanges. The associated communication cost is propofne corresponding to the union of the corresponding preposi
tional to the volume of data being communicated. It is pos1ions).
sible to bound the cost of the communication associated to Trimming. The cardinality of an hypothesis set can be re-
collective classification as follows. It can be seen thatehe duced by simply ignoring unlikely hypotheses. The simplest
can only be at mosty =) . n{f hypotheses being consid- way is retaining only hypotheses whose probability mass is
ered at any point in time, representing the number of differhigher than some absolute threshold. Figure 7(b) shows the
entiable object identities and poses. The information aboucardinality of the hypothesis set when the latter is trimmaed
the hypothesis to be transmitted can be encoded either by egording to different absolute thresholds. The hypotheais ¢
plicit encoding on a per-hypothesis basis, or by factoring o also be made smaller by removing all the hypotheses whose
information common to multiple hypotheses and using im-probability mass is below a threshold relative to the most
plicit information (like ordering) across message fragteen likely hypothesis, i.e. those that satigfiyr < r x max; pm;,
Per-hypothesis encoding. A unique identifier for each Wherer is the relative threshold angim; are the probabil-
hypothesis can be encoded using o.ﬁ]ng > ngﬂ bits. ity masses. The performance of this method is illustrated in
Due to memory constraints, hypotheses can be encoded dfigure 7(c).
ternatively ash = (i,[,0), whereK; is an object model] Coalescing. It is possible to further minimize the cost of
is the number of aspects of the hypothesis and the off-  transmitting an hypothesis set by transferring only some hy
set in the canonical views sequence. Thus, each hypothegi®theses. Those not specified explicitly can be coalested in
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Figure 7:(a) Minimal representable probability mass using dynamic range compresgipNumber of hypotheses with reduction based on
absolute threshold(c) Number of hypotheses with reduction based on relative threshold.

a more general hypothesis carrying the sum of the probabil- Feature Distances Probability masses
ity masses using:(X) = >,y m(Y). This scheme also Flat Concv. M | Flat Concv. M

makes the overall communication more robust, since itcan beConca-| 1020 543 1096 0.26 0.49 0.24
interrupted without adverse consequences at any poimgluri  Vity 765 872 1359 0.41 036 0.23

the transmission of the probability masses. 664 764 1251 0.42 0.36 0.22

Termination. When information fusion is successful, the 1275 861 995| 0.27 039 0.34
whole group of robots will converge as a whole towards a 702 215 1105 0.20 0.67 0.13
common decision regarding the nature of the object. The final 1020 1020 141§ 0.37 0.37 0.26

decision of each robot can be taken as the hypothesis with the Flat 258 812 1864 0.69 0.22 0.10
highest associated probability mass. It is therefore razgs  surface| 259 954 1846/ 0.71 0.19 0.10
to know when a given hypothesis set can be considered as 510 872 1862 0.54 0.31 0.15
"refined enough”. The key idea is that hypothesis refinement M 1785 1785 1646 0.32 0.32 0.25
can be considered finished when enough evidence has beerronca- | 1530 1343 789| 0.25 0.28 0.48
collected, i.e. the ambiguity of a set of hypotheses is large  vity 1436 1288 1190 0.30 0.34 0.36

than a given thresholdHutchinson and Kak, 1992iefines 1444 1331 895 0.27 0.29 0.44
the ambiguity of an hypothesis set, closely related to time co 1530 1376 1053 0.28 0.31 0.41
cept of entropy in information theory, as followst () = 1624 1570 1312 0.31 0.32 0.38
_ _ Zocum(H) ; e 1457 1294 861| 0.26 0.29 0.44

K2 4eqp(9)1ogp(6). p(0) r - ThiS defini 1275 1061 550| 0.22 027 051

tion takes into account the fact that an hypothesis might cor
respond to several individual statements or singletonsarit
be seen than the ambiguity measure of the probability masable 1: Probability mass assignments according to Jagmine
assignmenf{Q —> 1}, i.e. complete ignorance, corresponds scan data.

to the entropy of an equiprobable distribution oj@} possi-

ble outcomes. the belief of a robot after its initial estimation, which iaded

. . ) ) only on the information obtained via distance sensors, &nd a
6 Preliminary experiments and discussion ter reception of messages from other robots. The beliebgalu

Preliminary experiments have been performed with 10 proconverge quickly towards the correct value.

totypes of the microrobots Jasmine in the field of individual ~Figure 8(b) illustrates the evolution of robots placed acbu
and collective perception. In experiments we measured tha “T shaped” object. The curves “correct”, “wrong class” and
feature extraction and surface’s recognition, as destribe “wrong pose” indicate respectively the fraction of robdtatt
Section 4 and collective hypothesis refinement, as destribelook the correct decision, those which made a mistake in the
in Section 5. The robots are placed in the situations likegho class of the object, and finally those which were able to deter
depicted in Figures 4, 5. Table 1 contains the probabilitgsna mine the class of the object correctly but could not estimate
assignments for the three stored patterns “flat surfaceh-‘c their relative positions accurately. The graphs corredpda
cave area” and “M concavity”, represented in Figure 6 (c).an average value for several successful processes.

The calculated probabilities from experimental scans confi Figure 8(c) shows the success rate for different conver-
the results predicted by the simulation. The collectivescla gence rates. It can be interpreted as follows: a P, ;)
sification process was tested in hybrid approach, where thia the curve means that in percent of the runs the rate of
real scan data are taken from the microrobots, however theorrect decisions remained stablerapercent or higher af-
hypothesis fusion was performed in the host computer. Théer thirty message exchanges. We can therefore see that in
reason is a lack of bidirectional communication in the proto around 66% of the processes all robots took the right deci-
types, that is currently under improvement. Figure 8(ajssho sion regarding the object identity and their relative posit
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Figure 8: (a) Evolution of the classifying estimations of a robot. The belief value evolviieasbot obtains information from its peers,
while observing an object of class “T shape(h) Convergence in successful collective classification processegcjTuccess rate for
different convergence thresholds.

(the rate for a convergence equals to or greater than 80% ef-utchinson and Kak, 1992S. A. Hutchinson and A. C. Kak. Mul-

ceeds 82%), more than one half of the robots reached correct tisensor strategies using dempster-shafer belief accumulation. In

decisions regarding both object identity and position ierov ~ Data fusion in robotics and machine intelligencehapter 4,

90% of the classification operations. The group of microro- Pages 165-209. Academic Press Professional, Inc., 1992.

bots converged towards a wrong decision regarding the iderit-Swarm, 2003 2007 I-Swarm. I-Swarm: Intelligent Small World

tity of the object in around 5% of the classification procgsse ~ Autonomous Robots for Micro-manipulation, 6th Framework

Around 10% of the classification processes end up with less Programme Project No FP6-2002-IST-European Communi-

than one robot out of ten with correct identity but wrong posi  ties, 2003-2007.

tional decisions. Around 15% of the classification processe[ITU, 1989 ITU. G.711 pulse code modulation (pcm) of voice fre-

failed to converge to either a correct decision within a 20% quencies. nov 1988.

rate or to an erroneous decision. [Klein, 1999 Lawrence A. Klein. Sensor and Data Fusion Con-
Summary. In this paper we addressed the specific prob- cepts and ApplicationsSociety of Photo-Optical Instrumentation

lem of perception in a swarm of microrobots. We investigated Engineers (SPIE), 1999.

the process of individual perception by designing and imple[Kormienkoet al, 2004 S. Kornienko, O. Kornienko, and P. Levi.

menting the IR sensory system. We researched also the prob- Generation of desired emergent behavior in swarm of micro-

lems related to IR-based perception and developed/tdsted t  robots. InProc. of the 16th European Conf. on Al (ECAI 2004),

hardware and the corresponding algorithms allowing sgnsin  Valencia, Spain2004.

and classifying the geometry of the surfaces. The collectiv [kornienkoet al, 200§ S. Komienko, O. Kornienko, and P. Levi.

classification was performed by fusing local hypotheses by Collective ai: context awareness via communicationPioc. of

using a formalism based on the Dempster-Shafer evidential the IJCAI 2005, UK2005.

reasoning. Communication needs were analyzed. EXperjype 199 C.R. Kube. A minimal infrared obstacle detection

ments demonstrated that, the size of robot is scaled down schemeThe Journal for Robot Builderg(2):15-20, 1996.

(overb20 tim)esh in compﬁrison Withbthe r|r|1iddle—size Ieague[,vlega1bitty 2005 Megabitty see

in RoboCup), however the microrobot still possesses cogni- e ; .

tive features. However we also observe that the smaller thF _http'”groups'¥ahoo'_C(_)m/grOUp/megab'tty/' 2005'_

size (the more reduced capabilities) of a separate robibtsis, P'Eiisg IJ-IiﬁBllégétas. Digital Image Processing AlgorithmsPren-

more functionalities can be achieved only in collective way
[Pradier, 200b M. Pradier.Collective Classification in a Swarm of

Microrobots Master Thesis, University of Stuttgart, Germany,
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