
Generation of desired emergent behavior
in swarm of micro-robots

Sergey Kornienko and Olga Kornienko and Paul Levi 1

Abstract. Emergent behavior of swarm-like-systems results from
interactions among system’s components and cannot be directly pre-
programmed. This kind of behavior is very efficient, flexible and is
closely related with collective (swarm-) intelligence. In the presented
work we consider a derivation of local rules, creating such interac-
tions, that lead to desired emergent behavior. As an example of col-
lective emergence we choose forming spatial groups and assembling
microobjects by a swarm of microrobots.

1 INTRODUCTION

Manipulation of organic and anorganic matter on micro- and
nanoscales becomes a new paradigm of modern science. This
paradigm appears from two sides. Firstly, technologies from mate-
rial science, biology and other disciplines dealing traditionally on
these scales. Secondly, a development of fully functional molecular-
scale devices and robots. Microrobots of the projects MINIMAN,
MiCRoN and I-Swarm [8] represent the second trend (see fig. 1). A

Figure 1. Microrobots ”MINIMAN” (with permission of the Institute for
Process Control and Robotics, University of Karlsruhe, Germany).

problem of these robots is that they have very limited computational
and communicating resources on board, but have a wide spectrum of
tasks (cleaning, microassembling, transportation, collective percep-
tion) to be solved. There is no central instance being in charge of
coordination.

An approach to control microrobots consists in creating desired
collective behavior (like insect swarm-behavior). If the number of
robots is large enough (several hundreds of ”I-Swarm” robots), they
collectively accomplish the common goal. Swarm-like behavior is
an emergent property of the system, that cannot be directly prepro-
grammed. It is created by specific interactions among microrobots.
These interactions, in turn, are determined by local rules, governing
behavior of every robot.

For ”insect-standard” problems, like foraging, route optimization,
collective defence and so forth we can find and adopt the rules from

1 University of Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany,
email: korniesi@informatik.uni-stuttgart.de

the insect-world [4]. However for technical activities, like assem-
bling of microconstructions, we have to derive artificial rules, leading
to desired emergent behavior.

Another problem, that we encounter here, consists in regularity
and irregularity of desired collective behavioral pattern. We can de-
rive some compact optimization principles or fitness criteria for evo-
lutional generation (like genetic programming) of regular behavioral
patterns. However for generating irregular patterns, the irregularities
have to be completely described (the Kolmogorov complexity of gen-
erating grammar is much higher, than the generated pattern itself).
Unfortunately, most of the technically useful behavioral patterns are
irregular.

In this paper we consider a derivation of local rules for both reg-
ular and irregular behavioral patterns. Examples of tasks to be col-
lectively solved are formations of spatial groups and assembling of
microobjects by prototypes of ”I-Swarm” robots.

2 TOP-DOWN RULE GENERATION

Generally, local rules can be generated in the bottom-up (local rules
→ emergent behavior) and top-down (emergent behavior→ local
rules) way. The bottom-up approach, or rule-based programming [9],
originates from the domain of parallel and distributed computing.
Generation of these rules is mostly considered in a context of refin-
ing sequential program into concurrent one [3] with correspondingly
defined cooperation and coordination [2]. The general problem of
bottom-up approach is that we cannot say in advance, which emer-
gent behavior will be generated by the chosen rules (by analogy with
the well-known ”three-body problem” from nonlinear dynamics [1]).
The origin of this problem lies in the enormous complexity of a non-
linearly interacting system. Therefore we suggest to derive local rules
from emergent behavior in the top-down way.

The idea behind the top-down approach originates from the dis-
tributed AI field. Assume, we have an algorithm, that can decom-
pose the common taskΩ into n-subtasksΩi. We also have a set
of agents{Ag} with corresponding elementary activities so as to
solve collectively each ofΩi. The decomposition algorithm splits up
each ofΩi further, up to elementary agent’s activities. Thus, we have
{Ωj=1...m

i=1...n } sequences of activities, where an agentAgk needsm
steps to solveΩi. Since this algorithm decomposes systematically,
we can assume that all agents can solveΩ by executing{Ωj

i}. Re-
mark, that a cooperation between agents arises naturally as the top-
down decomposition of common task.

From the agents viewpoint, each agentAgk has a sequence of ac-
tivities Sk = {Ω1, Ω2, ..., Ωm}. Now, calculating Kolmogorov com-
plexity of sequenceSk (finding the smallest grammar [5]), we can
derive local rulesRk that can generateSk. The set of these rules
{R} defines a cooperation between agents that allows the agent’s

korniesi
Textfeld
ECAI 2004
R. Lopez de Mantaras and L. Saitta (Eds.)
IOS Press, 2004

korniesi
Textfeld
239

group cooperatively to solve the common taskΩ. Thus, the task de-
composition algorithm is the kern of the top-down rule generator.
Such a decomposition approach (algorithm of symbolic task decom-
position - ASTD) is described in [6], here we only sketch the main
ideas applied to deriving local rules.

The rule generating machineRg is a triple (Pl, Ag, Ob) consisting
of a planning systemPl, agents{Ag}, each with activities{Ai} and
agent-features{FA} and, finally, objects{Ob}, each with object-
features{FO}. We say that an activityA and a featureFA,O are of
the same type ifA can modifyFA,O (FA,O = FA or FO). For ex-
ample, the activity ”move” modifies the feature ”position”. More for-
mally, an activityA, parameterized by a technology (modality)D, by
technological descriptions of featureFA,O, bounded by constraints
Cl composes a construction that we denote as the working stepWS

of an agent:WS = {A(D) → FA,O, {Cl}}, whereWS ∈ WS.
Cl defines local constraints of agents activities, applied only toWS.
Now we connect activities with features of the same type. Moreover
we require that all feature are connected with corresponding activi-
ties (closeness condition). We denote a network of coupledFeatures-
Activities as the FA-network,NFA = ({A × FA,O}). FA-network
plays an important role in the ASTD approach.

Pl is a transition systemPl = {Tr(S) → S} and

Tr = {Tr
j : S

j
i → S

j
i+1}, S = {Ob × WS → T, {Cg}}, (1)

whereS ∈ (SP1 ∪ S
P2 ∪ S

P3 ∪ ... ≡ S) andS is a state space of all
plans,SPi are corresponding subspaces, andTr ∈ Tr, whereTr is
a space of all transitions. State of this plan is a mapping between a
working stepWS and an objectOb into a time windowT , bounded
by constraintsCg. A technology (modality)D used inWS is de-
fined in the stateS. Here we point to difference between the global
constraintsCg originating from the plan and the local onesCl, orig-
inating from activities of an agent.

Remember, thatWS consists of different quantities, being of ele-
mentary nature. Specifying a complete set of these atomic quantities,
we suppose that each state of a plan can be composed from them by
a generatorΓ. Now we rewrite (1) with the generatorΓ

Tr = {Tr
j : S

j
i → (Ob × (Γ → FA,O, {Cl}) → T, {Cg})},

S = {Ob × (Γ → FA,O, {Cl}) → T, {Cg}}. (2)

As seen from this expression, theS
j
i is known, butSj

i+1 = Γ(Si) is
yet unknown. ThereforeTr, besides transition, has in this context a
role of a decomposition algorithm. It tellsΓ which new state is re-
quired on the next step. We divide the spaceTr into two subspaces
of primaryTrp and of secondaryTrs activities. The first one defines
a regular planning and the second one is directed to repair a regular
planning.Trp is predefined and may not be changed, whereasTrs is
in charge of reactions to disturbances, includes functional decompo-
sition and should be so flexible as possible. Rewriting finally (1), we
get

Pl =

{

prim. : Trp(Ob × WS → T, {Cg}),
sec. : Trs(Ob × (Γ → FA,O, {Cl}) → T, {Cg}).

(3)

Let us introduce a new transitionTrdam, representing a distur-
banceTrdam = {Tr

j
dam : S

j
i → S′j

i+1}, where the stateS′j
i+1 is

a new perturbed state, deviating from the desired stateS
j
i+1. If the

transitionTrdam perturbs only one feature of an object, we speak
about singleTrs

dam, if Trdam perturbs simultaneously several fea-
tures of one or more objects, we speak about multipleTrm

dam. In this
work we generally focus only onTrs

dam. The aim of a planning sys-
tem is to create a repairing planPlsec that returns the system into the

stateSj
i+1

Plsec = {Tr
j
s(S

′j
i+1) → S

j
i+1} (4)

Considering this expression, we claim there are one-step plans and
many-step plans satisfying (4).

Statement 1 (from [6]) Let NFA be a FA-network andTrs
dam is

a single perturbing transition. IfPlsec is defined as one-step plan,
there is alwaysTrs in sense of (4), if and only if the corresponding
Cl are satisfied.

Statement 2 (from [6]) Let NFA be a FA-network andTrs
dam is

a single perturbing transition. IfPlsec is defined as many-step plan,
there is always a sequence ofTrs in sense of (4) if and only if
- (1) all local constraintsCl are satisfied;
- (2) all global constraintsCg are satisfied;
- (3) Trs

dam andTrs never intersects.
Now the question is of how to deriveTrs. From (1) we have

S = {Ob × WS → T, {Cg}}, S
′ = {Ob

′ × WS
′ → T

′

, {Cg}}. (5)

Let us define a difference betweenS and S′ as△S′. We assume
that any modifications of timeT can be absorbed by rescheduling.
Therefore functional decompositions from△S′ concern only work-
ing steps (denoted as△WS′). The goal ofTrs is to minimize△S′,
i.e. we can write

Trs(Ob × WS
′ → T, {Cg}) = △S

′ (6)

or with the generatorΓ: Trs(Ob × (Γ → FA,O, {Cl}) →
→ T, {Cg}) = △S′, where

(Γ → FA,O, {Cl}) = △WS
′

. (7)

Expressions (6) and (7) give us a practical way to deriveTrs. Thus,
a task decomposition represents a systematic way to find a differ-
ence between real state and desired state in a form of working steps,
generated byΓ. For many-step plans this rule should be applied on
each step of executing, moreover this sequence of generated working
states converges in sense of (4). So far as the problem, before de-
composition, should be first formulated in a symbolic form (as the
FA-network and the planning system), we call this approach as the
algorithm of symbolic tasks decomposition.

Now return to the generation of rules. The perturbed stateS′j
i+1

represents the initial state of the agents’ system. The stateS
j
i+1 rep-

resent a desired state, where a common taskΩ is solved. The decom-
position algorithm produces a sequence of{Trs} for each agent, so
that to achieveSj

i+1 from S′j
i+1. We assume that the sequences

{Trs} have an internal structure, that can be reproduced by a
set of generating (local) rules.This problem is known as estimation
of Kolmogorov complexity or approximation of the smallest gram-
mar. There are several known approaches - Bisection algorithm, the
scheme LZ77 (see e.g. [5]).We point out that the local rules gen-
erate only a specific behavioral pattern, but do not preprogram
each step of an agent.We illustrate this idea by two following ex-
amples.

3 EMERGENT SPATIAL BEHAVIOR

In the first example we derive local rules for the classical problem
of spatial formations. We are going to show a construction of the
generatorΓ and difference between a formation of spatially regular
and irregular configuration. Moreover, we compare the efficiency of
the ”bottom-up” and ”top-down” local rules.

korniesi
Textfeld
240

Construction of FA-network. We haven agents that have ac-
tivities of type ”move” and feature ”position”,Agi = (A =
{M}, FA = (x, y)). All positions are calculated in local agent’s
coordinates, where own position of an agent represents the origin
of coordinates. ”Move” consists if 9 activities: 8 one-step move-
ments in each compass direction of the 8-neighborhood, as shown in
fig. 2(c), and one activity ”do nothing”,M = (1, 2, 3, ..., 9). In the
FA-network we connect a position of one agent with activity ”move”
of other agent,NFA = (A(move)×FA(x, y)). It means,if an agent
has to change a position of another agent, it has to ”move” itself.The
very simple action system is chosen by the reason of presentation’s
clearness. Disadvantage consists in a set of initial deadlocks (e.g. all
agents are placed on the diagonal line), where agents cannot make
any progress.

Construction of the planning system.States of a planer are
global spatial positions(x, y) of corresponding corners of spatial
shapes. Transitions are distance-relations between these corners. The
stateS

j
i+1 is a final constellation of all corner-points, representing

this shape, see figs. 2(a)-(c).Perturbation. Perturbed state of sys-

Figure 2. (a) The first row: regular spatial formations;(b) The second
row: irregular spatial formations;(c) Sensor’s compass directions of target,

the same directions are used for actors;(d) Complex irregular spatial
pattern.

temS′j
i+1 is a set of agents’ random initial positions.

Construction of generator Γ. The generatorΓ composes each
agent’s working stepWS so that to minimize△S′, i.e. deviation
betweenS′j

i+1 andS
j
i+1 in terms of available activities. It reads a

target and a distance from the planning system (the corresponding
spatial pattern) and tries to minimize distance between itself and the
chosen target

D=distance(itself and target[from plan]);

for (int i=1; i<=9; i++) {
do (virtual Activity i);
D[i]=distance(itself and target[from plan]);}

find minimal(delta=D-D[j]); do (Activity j);

Executing. In the simulation we analyzed sequence of agents’ ac-
tivities in dependence of sensor data (”evolutional” rules). Since the
actor’s system consists only of 8 movements of the same type, for
analysis we do not need complex approaches. For a typical situation,
the rules, generating these sequences, have the following form (Ds -
distance between agent and target from sensors,i - direction of tar-
get,Dp - distance between agent and target from the plan (patterns
in figs. 2):

0

200

400

600

800

1000

1200

1400

3 4 5 6

“bottom-up” rules

“evolutional” rules

“top-down” rules

regular shapes

n-Polygonal shape

N
u

m
b

e
r

o
f

a
g

e
n

ts
’ s

te
p
s

irregular shapes

Figure 3. Comparison between the number of steps, needed to reproduce
the shapes from figs. 2(a), 2(b). Agents start from random initial conditions,
100×100 square, shown is the average result of 100 000 simulation cycles.

if (Ds<Dp) {for even i -> do (Activity i-4);
for odd i -> do (Activity i-3);}

if (Ds>Dp) {for even i -> do (Activity i);
for odd i -> do (Activity i-1);}

This result is very surprising. For even sensor directions (2,4,6,8),
see fig. 2(c), agent moves directly towards or directly away from a
target. However for odd sensor’s directions (1,3,5,7) it does not use
direct movement, it moves sideways! To prove this unexpected result
we compare these ”top-down” rules with the following ones

if (Ds<Dp) for i -> do (Activity i-4);
if (Ds>Dp) for i -> do (Activity i);

obtained by a ”common sense logic” in the ”bottom-up” way. Here
we use only direct movement towards a target or away from a target.
Comparison between the number of steps, needed to reproduce the
given pattern, with different sets of local rules is shown in fig. 3. As

regular shapes

irregular shapes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5 6

“bottom-up” rules

“top-down” rules

n-Polygonal shape

S
u
c
c
e
s
s
 r

a
te

“evolutional” rules

Figure 4. The reproduction rate for random initial conditions.

shown in this figure, the ”bottom-up” rules require the most numbers
of steps to reproduce the corresponding shape. The ”evolutional” and
”top-down” rules differs in≈ 1%, that points to a good quality of ap-
proximating rules. By increasing the number of simulation cycles,
they are expected to be coincided. The ”top-down” and the ”bottom-
up” sets differ in 5-20%. Another interesting result is that the”more
regular” and ”less regular” shapes with the same arearequires

korniesi
Textfeld
241

different number of steps. ”Less regular” shapes from fig. 2(b) re-
quire more steps.

As already mentioned, the ”rudimentary” actor system has some
initial deadlocks. As turned out, the ”bottom-up” rules are more sta-
ble to different initial conditions, as shown in fig. 4. To compare the
rules in ”ideal” conditions, we place agent in natural order (but also
randomly) on the circle. Moreover, we require that a difference be-
tween the pattern and the reproduced shape is less then the threshold
Tresh. In this way the reproduction rate is of≈99% for all rules for
all shapes. In these conditions we compare again the number of steps
required to reproduce the shapes for three sets of rules, as shown in
fig. 5. We see, that although the difference between ”bottom-up”

“evolutional” rules

N
u
m

b
e
r

o
f
a
g
e
n
ts

’ s
te

p
s

200

250

300

350

400

450

500

550

600

650

700

3 4 5 6

“bottom-up” rules

“top-down” rules

n-Polygonal shape

Figure 5. Comparison between the number of steps, needed to reproduce
the shapes from fig. 2. Agents start in natural order from random initial
conditions in a circle of radius 100,Tresh = 50, shown is the average

result of 100 000 simulation cycles.

rules and others gets smaller, but anyway they remain less efficient,
than ”evolutionary” and ”top-down” rules.

Can the shapes from fig. 2(a)-(b) be generated without reading dis-
tances from the pattern ? For equilateral triangle in fig. 2(a) it is pos-
sible (for a large number of agents it appears in hexagonal structures).
However can the shape from fig. 2(d) be generated in ”evolutional”
way ? We know only one type of evolution that can reproduce it -
namely, the evolution of human civilization ! If we need more ”com-
pact” generator, we need to describe all irregularities in the shape.
Remark, that local rules do not predetermine the behavior of agent,
they create a specific group’s behavioral pattern, that can reproduce
any of the shapes from fig. 2.

4 EMERGENT FUNCTIONAL BEHAVIOR:
ASSEMBLING

In the previous example we have shown, that the rules for emer-
gentspatial behavior can be derived in the top-down way, and they
are more efficient, than the bottom-up rules. However, in the micro-
robotic scenario, as well as in the industrial manufacturing scenario,
we need also different types offunctional behavior. We consider
such a functional behavior on the example of assembling of microob-
jects.

In this scenario there are two different kinds of agents with dif-
ferent abilities and two kinds of objects with different geometry, see
fig. 6. The common task, to assemble them into a construction, can
be solved only by a cooperation between agents. An appearance of
cooperation we consider as an emergent property of this system.

Construction of FA-network. The first type of agents,Ag1 can
rotate an object,Ag1 = (A = {move, rotate}, FA = (x, y)),

(a) (b)

x

y

z

Object 1

40

25

2
0

10
45´

5

5
0

2
0

1

2

Object 2

Object 3

x

z

Figure 6. The workpieces to be assembled;(a) 3D Representation;(b) The
x-z section of objects.

where as the second one can transport an objectAg2 = (A =
{move, transport}, FA = (x, y)). Both agents have the fea-
ture ”position” (x, y) in the agent’s local coordinate system and
have a movement system like the agents from the previous sec-
tion. Objects have the features ”position”(x, y), ”rotation angle”
α and ”geometry”(h, l), Ob1 = (FO = {(x, y), α, (h1, l1)}),
Ob2 = (FO = {(x, y), α, (h2, l2)}). The FA-networkNFA con-
nects ”rotation” with ”angle”, ”transport” with ”position” of ob-
jects, and ”move” with ”position” of agents,NFA = (A(rotate) ×
FO(α); A(transport) × FO(x, y); A(move) × FA(x, y)). Each
agent observes neighbors in some radiusRvis and within this radius
can recognize a distance to target and a rotational angle of target.
In order to simplify the FA-network, we do not consider collisions
between agents and an agent takes an object by placing itself in the
geometric origin of an object(x0, y0). Activity of each agent can be
represented in the form of Petri-nodes. In order to start an activity, a
lot of local restrictionsCl has to be fulfilled.

pret

),(),()1 yxAgyxOb =

ï
î

ï
í

ì

lC
ï
î

ï
í

ì

lC

),(.

)(

yyxxObtrans

Obrotate

D+D+®

D+® aa

0.)2 =busyOb

satisfiedC g ®)3

stepPlanstepOb ..)4 ³

posttAgent

“rotate”
“transport”

),(

),(

)()(

planplan

plan

yxOb

yxObtransp

ObObrot

=

=®

=® aa

Figure 7. Activity ”transport” and ”rotate” of agent with local constraints
Cl. Activity ”move” (see Sec. 3) is called automatically if a position of agent

do not coincide with a position of target.

Construction of the planning system.A plan of an assembling
has the form of Petri Net, shown in fig. 8. The plan consists of 7 steps,
shown as phasesp1-p7, where the positions and rotation angles are
shown. There is the defined order of assembling: the phasesp1, p3

andp6 can be started in parallel. However, other phases have to be
proceeded sequentially. The phasesp5 andp7 can be started ifp2, p4

andp5, p6 are finished. These restrictions are the global restrictions
Cg. Agents read from plan only relative distances between objects
(position of assembling place is marked by a mark). If an agent starts
some activity with an object, it marks this object by putting a number
of current phase on the mark (e.g. in the electromagnetic way).

Perturbation S′

n+1. Agents and objects are placed randomly, but
without intersections between objects.

Construction of generator Γ. The generatorΓ composes activ-
ities so that to minimize∆S′. However we see, that activities of
agents are bounded by constraintsCl andCg so that they can not be

korniesi
Textfeld
242

Figure 8. The assembling plan.Pi are phases, whereti are transitions with
conditions shown in the squares (e.g. conditions fort7 are the satisfaction of

local constraintsCl from fig. 7, and the finished phasesp5, p6).

generated in the way, shown in Sec. 3 (generally we solve this prob-
lem as the constraint satisfaction problem (CPS) [7]). In this case the
generatorΓ minimizes∆S′ simply by choosing different order of
allowed phasespi (here we do not consider other group’s strategies):

i=take random phase; do (planning activities);
choice i so that to minimize common time;

Executing. Each agent looks for objects withinRvis and reads the
objects’ marks. It takesCg and the modalityD from the plan. The
agent’s local rules consist ofCl from fig. 7 and the rule ”do close
phase(Activity)”, obtained from the generatorΓ:

Ob=look for (visible objects); read mark (Ob);
if (constraints(Ob)) do close phase (Activity);

This additional rule optimizes cooperation between agents and
means, if an agent has a choice, it chooses an activity most closely
to the first phase. The generated agent-agent cooperation is shown
in fig. 9. Now we try to ”improve” this cooperation by putting the

Figure 9. The agent-agent cooperation, generated by the ”top-down” rules.

additional ”bottom-up” cooperation rule:

I’m Ag_i; if (Ag_j=take the same Ob as I){
Ob belongs to Ag with smaller distance to it;}

In fig. 10 we show the comparison between the ”bottom-up” and
”top-down” rules. For smalln, the ”top-down” rules are more effi-
cient. However, ifn grows, new group’s strategies appear and we
have correspondingly to modify the generatorΓ.

Figure 10. Comparison between the ”bottom-up” and ”top-down” rules.
Agents start from random initial conditions,100×100 square,Rvis = 400,

shown is the average result of 100000 simulation cycles.

5 CONCLUSION

Top-down derivation of rules. In this paper we have shown the top-
down derivation of rules that generate the desired emergent behavior.
As shown in spatial and functional cases, these rules lead to more
efficient behavior, than the corresponding bottom-up derived rules.
The obtained local rules are very compact and can be implemented
as chip-built-functions in each microrobot. Treatment of this point
as well as an evolutional generation of the desired patterns (figs. 2
and 8) remains for an extended version of this paper.

Scalability. The system based on top-down derived rules is scaled-
free (tested up to 1000 agents). However if the number of agents
grows, the system can change collective strategy, as shown in fig. 10.
Because of limited size, this point also remains for an extended paper.

Acknowledgment.The presented work is made in the framework
of SFB 467 ”Transformable Business Structures for Multiple-Variant
Series Production” (supported by the German Research Foundation)
as well as EU-Project ”Intelligent Small World Autonomous Robots
for Micro-manipulation” (I-Swarm).

REFERENCES
[1] V.I. Arnold(Ed.), Dynamical systems III, Springer Verlag, Berlin, Hei-

delberg, New York, 1988.
[2] R. J. R. Back and F. Kurki-Suonio, ‘Distributed cooperation with action

systems’,ACM Trans. Program. Lang. Syst., 10(4), 513–554, (1988).
[3] R. J. R. Back and K. Sere, ‘Stepwise refinement of action systems’,

Structured Programming, 12, 17–30, (1991).
[4] E. Bonabeau, M. Dorigo, and G. Theraulaz,Swarm intelligence: from

natural to artificial systems, Oxford University Press, New York, 1999.
[5] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,

A. Rasala, A. Sahai, and A. Shelat, ‘Approximating the smallest gram-
mar: Kolmogorov complexity in natural models’, inProc. of the 34th
ACM symposium on Theory of computing, pp. 792–801. ACM Press,
(2002).

[6] S. Kornienko, O. Kornienko, and P. Levi, ‘Multi-agent repairer of dam-
aged process plans in manufacturing environment’, inProc. of the 8th
Conf. on Intelligent Autonomous Systems (IAS-8), Amsterdam, NL, pp.
485–494, (2004).

[7] S. Kornienko, O. Kornienko, and J. Priese, ‘Applicationof multi-agent
planning to the assignment problem’,Computers in Industry, 54(3), 273–
290, (2004).

[8] MINIMAN, MiCRoN, and I-Swarm, ‘(miniman) esprit-project-33915,
(micron) ist-2001-33567, (i-swarm) ist fet-open project 507006’. EU
Projects.

[9] G.-C. Roma, R. F. Gamble, and W. E. Ball, ‘Formal derivation of rule-
based programs’,IEEE Trans. Softw. Eng., 19(3), 277–296, (1993).

korniesi
Textfeld
243

