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Generation of desired emergent behavior
In swarm of micro-robots

Sergey Kornienko and Olga Kornienko and Paul Levi !

Abstract. Emergent behavior of swarm-like-systems results fromthe insect-world [4]. However for technical activities, like assem-
interactions among system’s components and cannot be directly préling of microconstructions, we have to derive artificial rules, leading
programmed. This kind of behavior is very efficient, flexible and isto desired emergent behavior.
closely related with collective (swarm-) intelligence. In the presented Another problem, that we encounter here, consists in regularity
work we consider a derivation of local rules, creating such interacand irregularity of desired collective behavioral pattern. We can de-
tions, that lead to desired emergent behavior. As an example of cotive some compact optimization principles or fitness criteria for evo-
lective emergence we choose forming spatial groups and assemblitigtional generation (like genetic programming) of regular behavioral
microobjects by a swarm of microrobots. patterns. However for generating irregular patterns, the irregularities
have to be completely described (the Kolmogorov complexity of gen-
erating grammar is much higher, than the generated pattern itself).
1 INTRODUCTION Unfortunately, most of the technically useful behavioral patterns are

Manipulation of organic and anorganic matter on micro- andirregular.

nanoscales becomes a new paradigm of modern science. This In this paper we consider a derivation of local rules for both reg-

paradigm appears from two sides. Firstly, technologies from mateular and irregular behavioral patterns. Examples of tasks to be col-
rial science, biology and other disciplines dealing traditionally onlectively solved are formations of spatial groups and assembling of
these scales. Secondly, a development of fully functional molecularicroobjects by prototypes of "I-Swarm” robots.

scale devices and robots. Microrobots of the projects MINIMAN,

MiCRoN and I-Swarm [8] represent the second trend (see fig. 1). 2 TOP-DOWN RULE GENERATION

Generally, local rules can be generated in the bottom-up (local rules
— emergent behavior) and top-down (emergent behaviolocal
rules) way. The bottom-up approach, or rule-based programmjng [9
originates from the domain of parallel and distributed computing.
Generation of these rules is mostly considered in a context of refin-
ing sequential program into concurrent one [3] with correspondingly
defined cooperation and coordination [2]. The general problem of
bottom-up approach is that we cannot say in advance, which emer-
Figure 1. Microrobots "MINIMAN" (Wi_th pgrmission of the Institute for gent behavior will be generated by the chosen rules (by analogy with
Process Control and Robotics, University of Karlsruhenezety). the well-known "three-body problem” from nonlinear dynamics [1]).

The origin of this problem lies in the enormous complexity of a non-

problem of these robots is that they have very limited computationalInearly Interacting sys_ter_n. Therefore we suggest to derive local rules
rom emergent behavior in the top-down way.

and communicating resources on board, but have a wide spectrum o The idea behind the top-down approach originates from the dis-

tasks (cleaning, microassembling, transportation, collective perceqjibuted Al field. Assume, we have an algorithm, that can decom-

tion) to be solved. There is no central instance being in charge o .
cooadination 9 g pose the common tasR into n-subtasks2;. We also have a set

An approach to control microrobots consists in creating desirec? f agents{Ag} with corresponding elementary activities so as to

collective behavior (like insect swarm-behavior). If the number 01‘SOIVe collectively each af;. The decompqsﬂmq r?ll_gorlthm splits up
. N . each of(2; further, up to elementary agent’s activities. Thus, we have
robots is large enough (several hundreds of "I-Swarm” robotsy; th

j=1l...m P
collectively accomplish the common goal. Swarm-like behavior is{Qi:1~~” } sequences of_actlvme_s, where an agelg; ”eec's”?
steps to solve);. Since this algorithm decomposes systematically,

an emergent property of the system, that cannot be directly Prepros = an assume that all agents can sevby executing{QZ}. Re-

grammed. It is created by specific interactions among microrobots, : !
. ) . . . “mark, that a cooperation between agents arises naturally as the top-
These interactions, in turn, are determined by local rules, governin

behavior of every robot. %own decomposition of common task.

For "insect-standard” problems, like foraging, route optimization, . .F.rom the agents viewpoint, each agetg has a sequence of ac
. . tivities S = {Q1, Qa, ..., U }. Now, calculating Kolmogorov com-
collective defence and so forth we can find and adopt the rules from o
plexity of sequenceS;. (finding the smallest grammar [5]), we can

1 University of Stuttgart, Universitsstr. 38, D-70569 Stuttgart, Germany, derive local rulesRy, that can generaty. The set of these rules
email: korniesi@informatik.uni-stuttgart.de {R} defines a cooperation between agents that allows the agent’s
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group cooperatively to solve the common t&sKThus, the task de- stateSfH
composition algorithm is the kern of the top-down rule generator.
Such a decomposition approach (algorithm of symbolic task decom-
position - ASTD) is described in [6], here we only sketch the mainConsidering this expression, we claim there are one-step plans and
ideas applied to deriving local rules. many-step plans satisfying (4).

The rule generating machiry is a triple (Pl, Ag, Ob) consisting Statement 1 (from [6]) Let Nr 4 be a FA-network and™r;,,,,, is
of a planning systen®l, agents{ Ag}, each with activite{ A;} and  a single perturbing transition. IPl,.. is defined as one-step plan,
agent-feature§ F.4 } and, finally, objects{Ob}, each with object- there is alway<'r, in sense of (4), if and only if the corresponding
features{ Fo }. We say that an activityl and a featurd’s o are of  C; are satisfied.
the same type ifA can modifyFa,0 (Fa,o = Fa or Fo). For ex- Statement 2 (from [6]) Let Nra be a FA-network and'r;,,,,, IS
ample, the activity "move” modifies the feature "position”. More for- a single perturbing transition. IPi,.. is defined as many-step plan,
mally, an activityA, parameterized by a technology (modalify) by there is always a sequenceBf, in sense of (4) if and only if
technological descriptions of featurés o, bounded by constraints - (1) all local constraintsC} are satisfied,;
C); composes a construction that we denote as the workingEtep - (2) all global constraint”, are satisfied;
of an agentWS = {A(D) — Fa,0,{Ci}}, whereW S € WS. - (3) T'r3,., andT'rs never intersects.
C; defines local constraints of agents activities, applied oniy/'t8. Now the question is of how to derivErs. From (1) we have
Now we connect activities with features of the same type. Moreover
we require that all feature are connected with corresponding activiS = {Ob x WS — T,{Cy}},8" = {Ob' x WS — T",{C,}}. (5)

ties (closeness condition). We denote a network of coupésdures- . ) , ,
Activities as the FA-networkNz4 = ({4 x Fa.0}). FA-network Let us define a difference betweghand S’ as AS’. We assume

plays an important role in the ASTD approach. that any modifi(_:ations of tim& can be absgrbed by rescheduling.
Plis a transition systen?l = {Tr(S) — S} and _Therefore functional decompositions frafnS ‘concern only work-
, 4 ‘ ing steps (denoted asW S’). The goal ofl'r; is to minimizeAS’,
Tr={Tr":8] = 8]}, S={0bxWS —=T,{Cy}}, (1) i.e. we can write

Ploce = {T11(8'11) — i, } @)

whereS € (S US™ US™s U ... = S) andS is a state space of all Tro(Obx WS — T,{Cy}) = AS’ (6)
plans,S™ are corresponding subspaces, dhde Tr, whereTr is

a space of all transitions. State of this plan is a mapping between ar with the generator: 7r,(Ob x (I' — Fa,0,{Ci}) —

working stepl¥ S and an objecOb into a time windowT, bounded — T,{Cy}) = AS’, where

by constraintsCy. A technology (modality)D used inWS is de-

fined in the states. Here we point to difference between the global (T = Fao,{Ci}) = AWS". (7)

constraints”, originating from the plan and the local on€'s, orig- ) ) .
inating from activities of an agent. Expressions (6) and (7) give us a practical way to defive. Thus,

Remember, thalti’ S consists of different quantities, being of ele- a task decomposition represents a systematic way to find a differ-

mentary nature. Specifying a complete set of these atomic quantitie§Ne between real state and desired state in a form of working steps,

we suppose that each state of a plan can be composed from them B§nerated by". For many-step plans this rule should be applied on
a generatoF'. Now we rewrite (1) with the generator each step of executing, moreover this sequence of generated working
states converges in sense of.(8p far as the problem, before de-

Tr = {Tr :8) = (Obx (I' = Fa,0,{Ci}) — T,{Cy})}, composition, should be first formulated in a symbolic form (as the
S = {Obx (I = Fao,{Ci}) = T,{C,}}. ) FA-network and the planning system), we call this approach as the
_ _ algorithm of symbolic tasks decomposition. ‘
As seen from this expression, t§¢ is known, butS; , = I'(S;) is Now return to the generation of rules. The perturbed stéfe,

yet unknown. Therefor@'r, besides transition, has in this context a represents the initial state of the agents’ system. The ngtlerep-
role of a decomposition algorithm. It tells which new state is re- resent a desired state, where a common §aisksolved. The decom-
quired on the next step. We divide the sp&eeinto two subspaces position algorithm produces a sequence 8-, } for each agent, so
of primaryTr, and of secondar{r, activities. The first one defines that to achieveS§+1 from S’7,,. We assume that the sequences
a regular planning and the second one is directed to repair a regulai,} have an internal structure, that can be reproduced by a
planning.Tr, is predefined and may not be changed, wheteass  set of generating (local) rulesThis problem is known as estimation
in charge of reactions to disturbances, includes functional decompaf Kolmogorov complexity or approximation of the smallest gram-
sition and should be so flexible as possible. Rewriting finally (1), wemar. There are several known approaches - Bisection algorithm, the
get scheme LZ77 (see e.g. [S)Ve point out that the local rules gen-
pu= [ rim TfOL WS - T2 (G (©)  each step of an agentie Husuate ths doa by o folowing ox
sec. : Tra(Ob x (I' = Fa0,{Ci}) — T,{Cy}). amples P 9 y g

Let us introduce a new transitidﬁrdam, representing a distur-
bancelrqam = {Tr),,, : S? — S'/.1}, where the stat€’]_; is 3 EMERGENT SPATIAL BEHAVIOR
a new perturbed state, deviating from the desired sﬁ’é;@. If the
transitionTrq.., perturbs only one feature of an object, we speakin the first example we derive local rules for the classical problem
about singler'ry,,,,, if Tra.m perturbs simultaneously several fea- of spatial formations. We are going to show a construction of the
tures of one or more objects, we speak about mulfiplg,,,. In this generatoil” and difference between a formation of spatially regular
work we generally focus only oA, ,,. The aim of a planning sys- and irregular configuration. Moreover, we compare the efficiency of
tem is to create a repairing pld?i;.. that returns the system into the the "bottom-up” and "top-down” local rules.
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Construction of FA-network. We haven agents that have ac- 1400

tivities of type "move” and feature “position”Ag; = (A4 = . i ottom-¢ p” rules
{M},Fa = (z,y)). All positions are calculated in local agent’s Qo £ 1200 op-downries >‘{
coordinates, where own position of an agent represents the origin 2 1000 //f'
of coordinates. "Move” consists if 9 activities: 8 one-step move- c \: - ‘T
ments in each compass direction of the 8-neighborhood, as shown in % 800
fig. 2(c), and one activity "do nothing/ = (1,2,3,...,9). In the 5 V
FA-network we connect a position of one agent with activity "move” 5 600 2 “evolutional” rules
of other agentNr 4 = (A(move) x Fa(z,y)). It meansijf an agent € 400 2
has to change a position of another agent, it has to "move” itSéie 3

. . . - > regular shapes —
very simple action system is chosen by the reason of presentation’s 200 = :

. . . L irregular shapes ---

clearness. Disadvantage consists in a set of initial deadlocks (e.qg. all 0 (' ‘
agents are placed on the diagonal line), where agents cannot make 3 4 5 6
any progress. n-Polygonal shape

Construction of the planning system.States of a planer are _ '
global spatial positiongz, y) of corresponding corners of spatial ngﬁea&es(f:rgm‘??rf%?aseg’(vs)eThfn?suggﬁrfg ;tfgsaggael(ﬁodngﬁrgﬁéo‘jUce
shapes. Transitions are distance-relations between these corrers. 00x 15’0 square,gsh.own is the-avgrage result of 100 000 simulalir.ies:’
stateSJ+1 is a final constellation of all corner-points, representing
this shape, see figs. 2(a)-(cPerturbation. Perturbed state of sys-
if (Ds<Dp) {for even i -> do (Activity i-4);

. for odd i -> do (Activity i-3);}
A ' LE r f ¢ if (Ds>Dp) {for even i -> do (Activity i);
o 5 for odd i -> do (Activity i-1);}

This result is very surprising. For even sensor directions (2,4,6,8)

see fig. 2(c), agent moves directly towards or directly away from a

& 3 target. However for odd sensor’s directions (1,3,5,7) it does set u
direct movement, it moves sideways! To prove this unexpected result

2 P we compare these "top-down” rules with the following ones
23
e " e if (Ds<Dp) for i -> do (Activity i-4);
2 ( * 5??1 if (Ds>Dp) for i -> do (Activity i);
19 a0 (d)

obtained by a "common sense logic” in the "bottom-up” way. Here
Figure 2. (a) The first row: regular spatial formationds) The second we use c_)nly direct movement towards a target or away from a target.
row: irregular spatial formationgc) Sensor’'s compass directions of target, Comparison between the number of steps, needed to reproduce the

the same directions are used f(:tf actddy; Complex irregular spatial given pattern, with different sets of local rules is shown in fig. 3. As
pattern.

tem S’{H is a set of agents’ random initial positions. 0.9 regular shapes —

Construction of generator I'. The generatol” composes each 0.8 \ irregular shapes - ==
agent's working step¥ S so that to minimizeAS’, i.e. deviation 07 & >
betweenS’?,, and S, , in terms of available activities. It reads a @ NN
target and a distance from the planning system (the corresponding & 0.6 N “bottom-up” rules e
spatial pattern) and tries to minimize distance between itself and the 2 05 \§ e
chosen target § 04 i T~

> . « : »”

D=di stance(itself and target[from plan]); o 0.3 evolutional’ rules
for (int i=1; i<=9; i++) { 02 “top-down

do (virtual Activity i); 0.1

D{i]=distance(itself and target[fromplan]);} 3 4 5 6

n-Polygonal shape

find mnimal (delta=D-D[j]); do (Activity j); Figure 4. The reproduction rate for random initial conditions.

Executing. In the simulation we analyzed sequence of agents’ ac-

tivities in dependence of sensor data ("evolutional” rules). Since theshown in this figure, the "bottom-up” rules require the most numbers
actor’s system consists only of 8 movements of the same type, foof steps to reproduce the corresponding shape. The "evolutional” and
analysis we do not need complex approaches. For a typical situatioftop-down” rules differs in~ 1%, that points to a good quality of ap-
the rules, generating these sequences, have the following fosm ( proximating rules. By increasing the number of simulation cycles,
distance between agent and target from sensacrdjrection of tar-  they are expected to be coincided. The "top-down” and the "bottom-
get, Dp - distance between agent and target from the plan (patternsp” sets differ in 5-20%. Another interesting result is thatitmere

in figs. 2): regular” and "less regular” shapes with the same arearequires
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different number of steps. "Less regular” shapes from fig. 2¢b) r o

quire more steps. / < ﬁ H L. Obieet
As already mentioned, the "rudimentary” actor system has some
initial deadlocks. As turned out, the "bottom-up” rules are more sta- ,»‘?< Object 2
A)y\\

ble to different initial conditions, as shown in fig. 4. To compare the ¢

rules in "ideal” conditions, we place agent in natural order (but also / (4 ‘—l
randomly) on the circle. Moreover, we require that a difference be-

tween the pattern and the reproduced shape is less then the threshold / i %ﬁ Object 3
Tresh. In this way the reproduction rate is 899% for all rules for :

all shapes. In these conditions we compare again the number of steps (@) (b)
required to reproduce the shapes for three sets of rules, as shown
fig. 5. We see, that although the difference between "bottom-up’

]élpgure 6. The workpieces to be assembléd) 3D Representatior{p) The
X-z section of objects.

700
2 650 “bottom-up” rules where as the second one can transport an objeét = (A =
£ 600 : : ) {move, transport}, F4 = (z,y)). Both agents have the fea-
w 550 top-down FUIES7/ ture "position” (z,y) in the agent’s local coordinate system and
é) 500 "\ have a movement system like the agents from the previous sec-
8 450 svolutional rules tion. Objects have the featlljres "positio(it, y), "rotation angle”
© 400 a and "geometry”(h,l), Ob° = (Fo = {(z,y),q, (h1,11)}),
2 350 O = (Fo = {(=,y),, (h2,12)}). The FA-networkNr4 con-
E 300 nects "rotation” with "angle”, "transport” with "position” of ob-
Zz 250 jects, and "move” with "position” of agentsyra = (A(rotate) x
Fo(a); A(transport) x Fo(z,y); A(move) x Fa(z,y)). Each
200 3 4 5 6 agent observes neighbors in some radiys; and within this radius

can recognize a distance to target and a rotational angle of target.
In order to simplify the FA-network, we do not consider collisions
Figure 5. Comparison between the number of steps, needed to reproducdetween agents and an agent takes an object by placing itself in the
the shapes from fig. 2. Agents startin natural order from samthitial geometric origin of an objedtzo, yo ). Activity of each agent can be
conditions in a circle of radius 10@;resh = 50, shown is the average ted in the f fp t’. d | der to start fivit
result of 100 000 simulation cycles. represented in the form of Petri-nodes. In order to start an activity, a
lot of local restrictiong”; has to be fulfilled.

n-Polygonal shape

rules and others gets smaller, but anyway they remain less efficient, rotate — Ob(a. + Aat)
than "evolutionary” and "top-down” rules. trans. — Ob(x + Ax, y + Ay)
Can the shapes from fig. 2(a)-(b) be generated without reading dis- t Agent ¢
tances from the pattern ? For equilateral triangle in fig. 2(a) it is pos- pre “rotate” post
sible (for a large number of agents it appears in hexagonal struktures “transport”
However can the shape from fig. 2(d) be generated in "evolutional”
way ? We know only one type of evolution that can reproduce it - DOb(x,y) = Ag(x,y) rot = Ob(a) = Ob(aL ,,,)
namely, the evolution of human civilization ! If we need more "com- q i;gbfzf{;g)(M 1 transp — Ob(x, ) =
pact” generator, we need to describe all irregularities in the shape. )0 step > Planstep = Ob(% yuys ¥ yrar)

Remark, that local rules do not predetermine the behavior of agent,

they create a specific group’s behavioral pattern, that can repreduc gigure 7. Activity "transport” and "rotate” of agent with local comsints
any of the shapes from fig. 2. C;. Activity "move” (see Sec. 3) is called automatically if a pash of agent
do not coincide with a position of target.

4 EMERGENT FUNCTIONAL BEHAVIOR: . . .
ASSEMBLING Construction of the planning §y§tem.A plan of an a_ssembllng
has the form of Petri Net, shown in fig. 8. The plan consists of 7 steps,
In the previous example we have shown, that the rules for emershown as phases -p7, where the positions and rotation angles are
gentspatial behavior can be derived in the top-down way, and they shown. There is the defined order of assembling: the phases
are more efficient, than the bottom-up rules. However, in the microandps can be started in parallel. However, other phases have to be
robotic scenario, as well as in the industrial manufacturing scenariggroceeded sequentially. The phagesndp; can be started b2, p4
we need also different types @iinctional behavior. We consider  andps, ps are finished. These restrictions are the global restrictions
such a functional behavior on the example of assembling of microob€,. Agents read from plan only relative distances between objects
jects. (position of assembling place is marked by a mark). If an agent starts
In this scenario there are two different kinds of agents with dif- some activity with an object, it marks this object by putting a number
ferent abilities and two kinds of objects with different geometry, seeof current phase on the mark (e.g. in the electromagnetic way).
fig. 6. The common task, to assemble them into a construction, can Perturbation S, ;. Agents and objects are placed randomly, but
be solved only by a cooperation between agents. An appearance without intersections between objects.
cooperation we consider as an emergent property of this system. Construction of generator I'. The generatof’ composes activ-
Construction of FA-network. The first type of agentsdg® can ities so that to minimizeAS’. However we see, that activities of
rotate an objectAg’ = (A = {move,rotate}, Fa = (z,y)), agents are bounded by constrai@tsandC, so that they can not be
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> (x.y)=(150,150)
Orient=0"

Figure 8. The assembling plar?; are phases, whetg are transitions with
conditions shown in the squares (e.g. conditiong faare the satisfaction of
local constraintg”; from fig. 7, and the finished phasgs, ps).
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Figure 10. Comparison between the "bottom-up” and "top-down” rules.
Agents start from random initial conditions, 19000 squareR,,;s = 400,
shown is the average result of 100000 simulation cycles.

generated in the way, shown in Sec. 3 (generally we solve this prob-
lem as the constraint satisfaction problem (CPS) [7]). In this case thgg CONCLUSION

generatod’ minimizesAS’ simply by choosing different order of

allowed phases; (here we do not consider other group’s strategies): ToP-down derivation of rules. In this paper we have shown the top-

i =t ake random phase; do (planning activities);
choice i so that to minimze conmmon tine;

Executing. Each agent looks for objects withiR,;; and reads the
objects’ marks. It take€’, and the modalityD from the plan. The
agent’s local rules consist @f; from fig. 7 and the rule "do close
phase(Activity)”, obtained from the generaior

b=l ook for (visible objects); read mark (Qb);
if (constraints(o)) do close phase (Activity);

down derivation of rules that generate the desired emergent behavior
As shown in spatial and functional cases, these rules lead to more
efficient behavior, than the corresponding bottom-up derived rules.
The obtained local rules are very compact and can be implemented
as chip-built-functions in each microrobot. Treatment of this point
as well as an evolutional generation of the desired patterns (figs. 2
and 8) remains for an extended version of this paper.

Scalability. The system based on top-down derived rules is scaled-
free (tested up to 1000 agents). However if the number of agents
grows, the system can change collective strategy, as shown in fig. 10.
Because of limited size, this point also remains for an extended paper.

This additional rule optimizes cooperation between agents and Acknowledgment. The presented work is made in the framework
means, if an agent has a choice, it chooses an activity most closely SFB 467 "Transformable Business Structures for Multiple-Variant
to the first phase. The generated agent-agent cooperation is showfaries Production” (supported by the German Research Foundation)
in fig. 9. Now we try to "improve” this cooperation by putting the 45 well as EU-Project "Intelligent Small World Autonomous Robots
for Micro-manipulation” (I-Swarm).
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